【題目】已知:PA、PB、EF分別切⊙O于A、B、D,若PA=15cm,那么△PEF周長(zhǎng)是cm.若∠P=50°,那么∠EOF=

【答案】30;65°
【解析】解:∵PA、PB、EF分別切⊙O于A、B、D,
∴PA=PB=15cm,ED=EA,F(xiàn)D=DB,
∴PE+EF+PF=PE+ED+PF+FD=PA+PB=30(cm)即△PEF周長(zhǎng)是30cm;
∵PA、PB為⊙O的切線(xiàn),
∴∠PAO=∠PBO=90°,
而∠P=50°,
∴∠AOB=360°﹣90°﹣90°﹣50°=130°;
連OD,如圖,

∴∠ODE=∠ODF=90°,
易證得Rt△OAE≌Rt△ODE,Rt△OFD≌Rt△OFB,
∴∠1=∠2,∠3=∠4,
∴∠2+∠3= ∠AOB=65°,則∠EOF=65°.
根據(jù)切線(xiàn)長(zhǎng)定理證得ED=EA,F(xiàn)D=DB,再根據(jù)△PEF周長(zhǎng)=PE+EF+PF,證得△PEF周長(zhǎng)等于2PA。即可得出答案;連接OD,OA,OB。根據(jù)直角三角形的全等判定證得Rt△OAE≌Rt△ODE,Rt△OFD≌Rt△OFB,再根據(jù)全等三角形的性質(zhì)得出∠1=∠2,∠3=∠4,就可證得∠EOF=∠AOB。再在四邊形APBO中根據(jù)四邊形的內(nèi)角和定理求出∠AOB的度數(shù),即可求出∠EOF的度數(shù)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有A、BC三種不同型號(hào)的卡片,每種卡片各有9.其中A型卡片是邊長(zhǎng)為3的正方形,B型卡片是相鄰兩邊長(zhǎng)分別為31的長(zhǎng)方形,C型卡片是邊長(zhǎng)為1的正方形.從其中取若干張卡片(每種卡片至少取1張),若把取出的這些卡片拼成一個(gè)正方形,則所拼正方形的邊長(zhǎng)的最大值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線(xiàn)相較于點(diǎn)F

1)求證:四邊形BDFC是平行四邊形;

2)若△BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】越來(lái)越多的人在用微信支付、轉(zhuǎn)賬,把微信賬戶(hù)里的錢(qián)轉(zhuǎn)到銀行卡叫做提現(xiàn),自201631日起,每個(gè)微信賬戶(hù)終身享有1000元的免費(fèi)提現(xiàn)額度,當(dāng)累計(jì)提現(xiàn)金額超過(guò)1000元時(shí),累計(jì)提現(xiàn)金額超出1000的部分需支付0.1%的手續(xù)費(fèi),以后每次提現(xiàn)支付的手續(xù)費(fèi)為提現(xiàn)金額的0.1%.

1)小明在今天第1次進(jìn)行了提現(xiàn),金額為1800元,他需支付手續(xù)費(fèi)_____元;

2)小亮自201631日至今,用自己的微信賬戶(hù)共提現(xiàn)3次,3次提現(xiàn)金額和手續(xù)費(fèi)分別如下,問(wèn):小明3次提現(xiàn)金額共計(jì)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)BC//ED.

(1)如圖1,若點(diǎn)A在直線(xiàn)DE上,且B=44°,∠EAC=57°,求BAC的度數(shù);

(2)如圖2,若點(diǎn)A是直線(xiàn)DE的上方一點(diǎn),點(diǎn)GBC的延長(zhǎng)線(xiàn)上求證:∠ACG=∠BAC+∠ABC;

(3)如圖3,FH平分AFE,CH平分ACG,且FHCA2倍少60°,直接寫(xiě)出A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(t+1,t+2),點(diǎn)B(t+3,t+1),將點(diǎn)A向右平移3個(gè)長(zhǎng)度單位,再向下平移4個(gè)長(zhǎng)度單位得到點(diǎn)C.

(1)用t表示點(diǎn)C的坐標(biāo)為_______;t表示點(diǎn)By軸的距離為___________;

(2)若t=1時(shí),平移線(xiàn)段AB,使點(diǎn)A、B到坐標(biāo)軸上的點(diǎn)、處,指出平移的方向和距離,并求出點(diǎn)的坐標(biāo);

(3)若t=0時(shí),平移線(xiàn)段ABMN點(diǎn)A與點(diǎn)M對(duì)應(yīng)),使點(diǎn)落在軸的負(fù)半軸上,三角形MNB的面積為4,試求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處,測(cè)得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米,則此時(shí)AB的長(zhǎng)約為( )(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A.5.1米
B.6.3米
C.7.1米
D.9.2米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在黃岡長(zhǎng)江大橋的東端一處空地上,有一塊矩形的標(biāo)語(yǔ)牌ABCD(如圖所示),已知標(biāo)語(yǔ)牌的高AB=5m,在地面的點(diǎn)E處,測(cè)得標(biāo)語(yǔ)牌點(diǎn)A的仰角為30°,在地面的點(diǎn)F處,測(cè)得標(biāo)語(yǔ)牌點(diǎn)A的仰角為75°,且點(diǎn)E,F(xiàn),B,C在同一直線(xiàn)上,求點(diǎn)E與點(diǎn)F之間的距離.(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.
(1)求證:k取任何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案