【題目】如圖,平行四邊形ABCD的邊ABx軸上,點(diǎn)C的坐標(biāo)為(﹣5,4),點(diǎn)Dy軸的正半軸上,經(jīng)過(guò)點(diǎn)A的直線yx1y軸交于點(diǎn)E,將直線AE沿y軸向上平移nn0)個(gè)單位長(zhǎng)度后,得到直線l,直線l經(jīng)過(guò)點(diǎn)C時(shí)停止平移.

1)點(diǎn)A的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   

2)若直線ly軸于點(diǎn)F,連接CF,設(shè)△CDF的面積為S(這里規(guī)定:線段是面積為0的三角形),求Sn之間的函數(shù)關(guān)系式,并寫(xiě)出n的取值范圍;

3)易知AEAD于點(diǎn)A,若直線l交折線ADDC于點(diǎn)P,當(dāng)△AEP為直角三角形時(shí),請(qǐng)直接寫(xiě)出n的取值范圍.

【答案】1A2,0),B-3,0);(2)當(dāng)0n5時(shí),S=10-2n;當(dāng)5n時(shí),S=2n-10;(3n=0n5

【解析】

1)令y=0,則x-1=0,求A2,0),由平行四邊形的性質(zhì)可知AB=5,則B-3,0);

2)易求E0-1),當(dāng)l到達(dá)C點(diǎn)時(shí)的解析式為y=x+,當(dāng)0n5時(shí),S=×4×(5-n=10-2n;當(dāng)5n時(shí),S=×4×(n-5=2n-10;

3)由點(diǎn)可以得到ADAE;當(dāng)PAD上時(shí),△AEP為直角三角形,0n5;當(dāng)PCD上時(shí),△AEP為直角三角形,則PEAE,設(shè)Pm,4),可得=-2,求出P-,4),此時(shí)l的解析式為y=x+,則n=

1)令y=0,則x-1=0,x=2,

A2,0),

C的坐標(biāo)為(-5,4),四邊形ABCD是平行四邊形,

AB=CD=5

OB=AB-OA=3,∴B-3,0);

2當(dāng)x=0時(shí),yx1=-1,所以E0-1),

∵直線AE沿y軸向上平移得到l,當(dāng)l到達(dá)C點(diǎn)時(shí)的解析式為y=x+,

此時(shí)ly軸的交點(diǎn)為(0,),

當(dāng)0n5時(shí),S=×4×(5-n=10-2n;

當(dāng)5n時(shí),S=×4×(n-5=2n-10

3)∵D0,4),A2,0),E0,-1),

AD=2,AE=,ED=5

AD2+AE2=ED2,

ADAE

當(dāng)PAD上時(shí),△AEP為直角三角形,

0n5

當(dāng)PCD上時(shí),△AEP為直角三角形,

PEAE,

設(shè)Pm,4),

=-2,

m=-,

P-,4),

∴此時(shí)l的解析式為y=x+

n=;

綜上所述:當(dāng)△AEP為直角三角形時(shí),n=0n5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠C=90°,sin∠A=,點(diǎn)D為邊AC上一點(diǎn),若∠BDC=45°,DC=6cm,則△ABC的面積等于 ________cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹(shù)的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017浙江省湖州市)如圖,已知∠AOB=30°,在射線OA上取點(diǎn)O1,以O1為圓心的圓與OB相切;在射線O1A上取點(diǎn)O2,以O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點(diǎn)O3,以O3為圓心,O3O2為半徑的圓與OB相切;;在射線O9A上取點(diǎn)O10,以O10為圓心,O10O9為半徑的圓與OB相切.若⊙O1的半徑為1,則⊙O10的半徑長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,解答問(wèn)題:

1)中國(guó)古代數(shù)學(xué)著作《周髀算經(jīng)》有著這樣的記載:“勾廣三,股修四,經(jīng)隅五.”這句話的意思是:“如果直角三角形兩直角邊為34時(shí),那么斜邊的長(zhǎng)為5.”上述記載說(shuō)明:在中,如果,,,那么三者之間的數(shù)量關(guān)系是:

2)對(duì)于(1)中這個(gè)數(shù)量關(guān)系,我們給出下面的證明.如圖①,它是由四個(gè)全等的直角三角形圍成的一個(gè)大正方形,中空的部分是一個(gè)小正方形.結(jié)合圖①,將下面的證明過(guò)程補(bǔ)充完整:

,

(用含的式子表示)

又∵

3)如圖②,把矩形折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)處,折痕為.如果,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某一個(gè)函數(shù),自變量x在規(guī)定的范圍內(nèi),若任意取兩個(gè)值x1和x2,它們的對(duì)應(yīng)函數(shù)值分別為y1和y2. 若x2>x1時(shí),有y2>y1,則稱該函數(shù)單調(diào)遞增;若x2>x1時(shí),有y2<y1,則稱該函數(shù)單調(diào)遞減.例如二次函數(shù)y=x2,在x≥0時(shí),該函數(shù)單調(diào)遞增;在x≤0時(shí),該函數(shù)單調(diào)遞減.

(1)二次函數(shù):y=(x+1)2+2自變量x在哪個(gè)范圍內(nèi),該函數(shù)單調(diào)遞減?

(2)證明:函數(shù):y=x﹣在x>1的函數(shù)范圍內(nèi),該函數(shù)單調(diào)遞增.

(3)若存在兩個(gè)關(guān)于x的一次函數(shù),分別記為:g=k1x+b1和h=k2x+b2,且函數(shù)g在實(shí)數(shù)范圍內(nèi)單調(diào)遞增,函數(shù)h在實(shí)數(shù)范圍內(nèi)單調(diào)遞減.記第三個(gè)一次函數(shù)y=g+h,則比例系數(shù)k1和k2滿足何種條件時(shí),函數(shù)y在實(shí)數(shù)范圍內(nèi)單調(diào)遞增?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長(zhǎng)的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個(gè)地方,豎起竹竿(即AE),這時(shí),他量了一下竹竿的影長(zhǎng)(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長(zhǎng)度(即AB=4米),他又豎起竹竿,這時(shí)竹竿的影長(zhǎng)正好是一根竹竿的長(zhǎng)度(即BD=2米).此時(shí),小明抬頭瞧瞧路燈,若有所思地說(shuō):噢,我知道路燈有多高了!同學(xué)們,請(qǐng)你和小明一起解答這個(gè)問(wèn)題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(m,n),則向量可以用點(diǎn)P的坐標(biāo)表示為=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,則互相垂直.

下面四組向量:①=(3,﹣9),=(1,﹣);

=(2,π0),=(21,﹣1);

=(cos30°,tan45°),=(sin30°,tan45°);

=(+2,),=(﹣2,).

其中互相垂直的組有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案