精英家教網 > 初中數學 > 題目詳情

【題目】若反比例函數y= (k≠0)的圖象經過點(1,﹣3),則一次函數y=kx﹣k(k≠0)的圖象經過象限.

【答案】一、二、四
【解析】解:∵反比例函數y= (k≠0)的圖象經過點(1,﹣3), ∴k=1×(﹣3)=﹣3<0,
∴一次函數解析式為y=﹣3x+3,根據k、b的值得出圖象經過一、二、四象限.
所以答案是:一、二、四.
【考點精析】解答此題的關鍵在于理解一次函數的圖象和性質的相關知識,掌握一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若t為實數,關于x的方程x2﹣4x+t﹣2=0的兩個非負實數根為a、b,則代數式(a2﹣1)(b2﹣1)的最小值是(
A.﹣15
B.﹣16
C.15
D.16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在手工制作課上,老師組織七年級(2)班的學生用硬紙制作圓柱形茶葉筒.七年級(2)班共有學生44人,其中男生人數比女生人數少2人,并且每名學生每小時剪筒身50個或剪筒底120個.

1)七年級(2)班有男生、女生各多少人?

2)要求一個筒身配兩個筒底,為了使每小時剪出的筒身與筒底剛好配套,應該分配多少名學生剪筒身,多少名學生剪筒底?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx+c與x軸交于A(5,0),B(﹣1,0)兩點,與y軸交于點C(0, ).

(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使得△ACP是以點A為直角頂點的直角三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點G為拋物線上的一動點,過點G作GE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線,垂足為點F,連接EF,當線段EF的長度最短時,求出點G的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小明的家位于一條南北走向的河流MN的東側A處,某一天小明從家出發(fā)沿南偏西30°方向走60 m到達河邊B處取水,然后沿另一方向走80 m到達菜地C處澆水,最后沿第三方向走100 m回到家A處.問小明在河邊B處取水后是沿哪個方向行走的?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y1=kx+b(k≠0)和反比例函數y2= (m≠0)的圖象交于點A(﹣1,6),B(a,﹣2).
(1)求一次函數與反比例函數的解析式;
(2)根據圖象直接寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校初三(1)班部分同學接受一次內容為“最適合自己的考前減壓方式”的調查活動,收集整理數據后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據圖中的信息解答下列問題.
(1)初三(1)班接受調查的同學共有多少名;
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應的圓心角度數;
(3)若喜歡“交流談心”的5名同學中有三名男生和兩名女生;老師想從5名同學中任選兩名同學進行交流,直接寫出選取的兩名同學都是女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在長方形ABCDAB=12 cm,BC=6 cm.P沿AB邊從點A開始向點B2 cm/s的速度移動;點Q沿DA邊從點D開始向點A1 cm/s的速度移動.

設點P,Q同時出發(fā),t(s)表示移動的時間.

(發(fā)現) DQ________cm,AP________cm.(用含t的代數式表示)

(拓展)(1)如圖①,t________s線段AQ與線段AP相等?

(2)如圖②,P,Q分別到達B,A后繼續(xù)運動P到達點C后都停止運動.

t為何值時,AQCP?

(探究)若點P,Q分別到達點B,A后繼續(xù)沿著ABCDA的方向運動,當點P與點Q第一次相遇時,請直接寫出相遇點的位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,O為直線AB上一點,OD平分∠AOC,∠DOE=90°.

(1)∠AOD的余角是 ______ ,∠COD的余角是 ______

(2)OE是∠BOC的平分線嗎?請說明理由.

查看答案和解析>>

同步練習冊答案