【題目】如圖,點B,C,D在同一條直線上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.
(1)求△ABC的周長;
(2)求△ACE的面積.
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE, 交 AC于點F.
(1)如圖①,當時,求的值;
(2)如圖②當DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)把(a﹣b)2看成一個整體,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的結果是 ;
(2)已知a+b=5(a﹣b),代數式= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調查統(tǒng)計,下面是他通過收集數據后,繪制的兩幅不完整的統(tǒng)計圖(圖1,圖2).請你根據圖中提供的信息,解答以下問題:
(1)該班共有 名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數為 ;
(4)若全校有2000名學生,則“其他”部分的學生人數為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點D,E,且AE平分∠BAC.
(1)求∠C的度數;
(2)若CE=1,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=5,AB=3.若M為射線AD上的一個動點,將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點所對應的AM長度的和為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖AB是⊙O的直徑,AC是弦,直線EF是過點C的⊙O的切線,AD⊥EF于點D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長度為5的動線段分別與坐標系橫軸、縱軸的正半軸交于點、點,點和點關于對稱,連接,過點作軸的垂線段,交軸于點
(1)移動點,發(fā)現(xiàn)在某一時刻,和以點為頂點的三角形相似,求這一時刻點的坐標;
(2)移動點,當時求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com