【題目】如圖1,已知兩條直線AB,CD被直線EF所截,分別交于點E,點F,EM平分∠AEF交CD于點M,且∠FEM=∠FME.
(1)直線AB與直線CD是否平行,說明你的理由;
(2)如圖2,點G是射線MD上一動點(不與點M,F重合),EH平分∠FEG交CD于點H,過點H作HN⊥EM于點N,設∠EHN=α,∠EGF=β.
①當點G在點F的右側(cè)時,若β=60°,求α的度數(shù);
②當點G在運動過程中,α和β之間有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并加以證明.
【答案】(1)AB∥CD,理由見解析;(2)①30°;②α=β,證明見解析.
【解析】
(1)根據(jù)角平分線的性質(zhì)及等量代換證明∠AEM=∠FME即可.
(2)①根據(jù)平行線的性質(zhì)求∠BEG,利用平角的定義求出∠AEG的度數(shù),根據(jù)角平分線的定義求出∠HEN即可解決問題.
②結(jié)論:α=β.根據(jù)平行線的性質(zhì)求∠BEG,利用平角的定義表示∠AEG的度數(shù),根據(jù)角平分線的定義表示∠HEN即可解決問題.
(1)結(jié)論:AB∥CD.
理由:如圖1中,
∵EM平分∠AEF交CD于點M,
∴∠AEM=∠MEF,
∵∠FEM=∠FME.
∴∠AEM=∠FME,
∴AB∥CD.
(2)①如圖2中,
∵AB∥CD,
∴∠BEG=∠EGF=β=60°
∴∠AEG=120°,
∵EH平分∠FEG,EM平分∠AEF
∴∠HEF=∠HEG,∠AEM=∠MEF
∴∠HEN=∠MEF+∠HEF=∠AEG=60°,
∵HN⊥EM,
∴∠HNE=90°,
∴∠EHN=90°﹣∠HEN=30°.
②猜想:α=β.
理由:∵AB∥CD,
∴∠BEG=∠EGF=β,
∴∠AEG=180°﹣β,
∵EH平分∠FEG,EM平分∠AEF
∴∠HEF=∠HEG,∠AEM=∠MEF
∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β
∵HN⊥EM,
∴∠HNE=90°,
∴α=∠EHN=90°﹣∠HEN=β.
科目:初中數(shù)學 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
(1)寫出扇形圖中a=%,并補全條形圖;
(2)在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是 個、個.
(3)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠對零件進行檢測,引進了檢測機器.已知一臺檢測機的工作效率相當于一名檢測員的20倍.若用這臺檢測機檢測900個零件要比15名檢測員檢測這些零件少3小時.
(1)求一臺零件檢測機每小時檢測零件多少個?
(2)現(xiàn)有一項零件檢測任務,要求不超過7小時檢測完成3450個零件.該廠調(diào)配了2臺檢測機和30名檢測員,工作3小時后又調(diào)配了一些檢測機進行支援,則該廠至少再調(diào)配幾臺檢測機才能完成任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC為邊長為6的等邊三角形,D,E分別在邊BC,AC上,且CD=CE=x,連接DE并延長至點F,使EF=AE,連接AF,CF.
(1)求證:△AEF為等邊三角形;
(2)求證:四邊形ABDF是平行四邊形;
(3)記△CEF的面積為S,
①求S與x的函數(shù)關(guān)系式;
②當S有最大值時,判斷CF與BC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入—進貨成本)
(1)求、兩種型號的電器的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?
(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) (用含t的代數(shù)式表示);
(2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?
(3)若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點E、F同時由A、C兩點出發(fā),分別沿AB、CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經(jīng)過t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)碼專營店銷售甲、乙兩種品牌智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4300 | 3600 |
售價(元/部) | 4800 | 4200 |
(1)該店銷售記錄顯示.三月份銷售甲、乙兩種手機共17部,且銷售甲種手機的利潤恰好是銷售乙種手機利潤的2倍,求該店三月份售出甲種手機和乙種手機各多少部?
(2)根據(jù)市場調(diào)研,該店四月份計劃購進這兩種手機共20部,要求購進乙種手機數(shù)不超過甲種手機數(shù)的,而用于購買這兩種手機的資金低于81500元,請通過計算設計所有可能的進貨方案.
(3)在(2)的條件下,該店打算將四月份按計劃購進的20部手機全部售出后,所獲得利潤的30%用于購買A,B兩款教學儀器捐贈給某希望小學.已知購買A儀器每臺300元,購買B儀器每臺570元,且所捐的錢恰好用完,試問該店捐贈A,B兩款儀器一共多少臺?(直接寫出所有可能的結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在學習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com