【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)yx+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象(如圖所示),當(dāng)直線yx+m與這個新圖象有四個交點時,m的取值范圍是_____

【答案】7m<﹣3

【解析】

如圖,解方程﹣x2+x+6=0A(﹣2,0),B3,0),再利用折疊的性質(zhì)求出折疊部分的解析式為y=x+2)(x3),即y=x2x6(﹣2x3),然后求出直線y=x+m經(jīng)過點A(﹣2,0)時m的值和當(dāng)直線y=x+m與拋物線y=x2x6(﹣2x3)有唯一公共點時m的值,從而得到當(dāng)直線y=x+m與新圖象有4個交點時,m的取值范圍.

解:如圖所示,過點B作直線yx+m1,將直線向下平移到恰在點C處相切,

則一次函數(shù)yx+m在兩條直線之間時,兩個圖象有4個交點,

y=﹣x2+x+60,解得:x=﹣23,即點B坐標(biāo)(3,0),

翻折拋物線的表達式為:y=(x3)(x+2)=x2x6(﹣2x3),

將一次函數(shù)與二次函數(shù)表達式聯(lián)立并整理得:x22x6m0,

b24ac4+46+m)=0,解得:m=﹣7

當(dāng)一次函數(shù)過點B時,將點B坐標(biāo)代入:yx+m得:03+m,解得:m=﹣3,

所以當(dāng)直線yx+m與這個新圖象有四個交點時,m的取值范圍是﹣7m<﹣3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ ABCD中,點EF在對角線BD上,且BEDF.

(1)求證:AECF

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+ca、b、c為常數(shù),a≠0)的衍生直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其衍生三角形.已知拋物線與其衍生直線交于A、B兩點(點A在點B的左側(cè)),與x軸負(fù)半軸交于點C

1)填空:該拋物線的衍生直線的解析式為 ,點A的坐標(biāo)為 ,點B的坐標(biāo)為 ;

2)如圖,點M為線段CB上一動點,將ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若AMN為該拋物線的衍生三角形,求點N的坐標(biāo);

3)當(dāng)點E在拋物線的對稱軸上運動時,在該拋物線的衍生直線上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點EF的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進價為每件20元,售價為每件30元,每個月可賣出180件:如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價不能高于35元,設(shè)每件商品的售價上漲元(為整數(shù)),每個月的銷售利潤為元。

1)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍:

2)每件商品的售價定為多少元時,每個月的利潤恰好是1920元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旅行社組團去外地考察學(xué)習(xí),10人起組團,每人單價1200元.該旅行社對超過10人的團給予優(yōu)惠,即考察團每增加一人,每人的單價就降低20元.(每人單價不能低于800元)當(dāng)考察團人數(shù)為多少人時,該旅行社可以獲得最大營業(yè)額?最大營業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標(biāo)A1,3),與x軸的一個交點B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣10);當(dāng)1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用一塊長為50cm、寬為30cm的長方形鐵片制作一個無蓋的盒子,若在鐵片的四個角截去四個相同的小正方形,設(shè)小正方形的邊長為xcm

1)底面的長AB  cm,寬BC  cm(用含x的代數(shù)式表示)

2)當(dāng)做成盒子的底面積為300cm2時,求該盒子的容積.

3)該盒子的側(cè)面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點CD⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

1)求BD的長;

2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案