【題目】如圖,在平面直角坐標(biāo)系中,,,.
(1)請畫出關(guān)于軸對稱的(其中,,分別是,,的對稱點(diǎn),不寫畫法,寫出、、的坐標(biāo))
(2)在軸上是否存在一點(diǎn),使的值最小,若有,請作出點(diǎn),并直接寫出點(diǎn)的坐標(biāo),若沒有,請說明理由.
【答案】(1)圖見解析,A′(0,2),B′(2,4),C′(4,1)(2)P(0,-3),圖見解析.
【解析】
(1)根據(jù)關(guān)于x軸對稱點(diǎn)的性質(zhì)得出對應(yīng)點(diǎn)位置,順次連接即可,再利用所畫圖形寫出各點(diǎn)坐標(biāo);
(2)利用軸對稱求出最短路徑即可.
(1)如圖所示:△A′B′C′即為所求,
A′(0,2),B′(2,4),C′(4,1);
(2)如圖所示:P點(diǎn)即為所求,P(0,-3)
找到B點(diǎn)關(guān)于y軸對稱點(diǎn)B″,連接B″C,交y軸于點(diǎn)P,
此時(shí)PA+PB的值最小.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時(shí),測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,點(diǎn)E.F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF、則EF=BE+DF,試說明理由;
(2)類比引申
如圖2,在四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E.F分別在邊BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF;
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,猜想BD、DE、EC滿足的等量關(guān)系,并寫出推理過程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AD是邊BC上的高,E為邊AC的中點(diǎn),BC=21,AD=8,sinB=.
求:(1)線段DC的長;
(2)tan∠EDC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=70°,∠BAC=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△EDC,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在AC邊上時(shí),∠CAE的度數(shù)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店的某種毛筆每支售價(jià)25元,書法練習(xí)本每本售價(jià)5元,該商店為促銷正在進(jìn)行優(yōu)惠活動(dòng):
活動(dòng)1:買一支毛筆送一本書法練習(xí)本;
活動(dòng)2:按購買金額的九折付款.
某學(xué)校準(zhǔn)備為書法興趣小組購買這種毛筆20支,書法練習(xí)本x(x≥20)本.
(1)寫出兩種優(yōu)惠活動(dòng)實(shí)際付款金額y1(元),y2(元)與x(本)之間的函數(shù)關(guān)系式;
(2)請問:該校選擇哪種優(yōu)惠活動(dòng)更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量出大樓AB的高度,從距離樓底B處50米的點(diǎn)C(點(diǎn)C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進(jìn)20米到達(dá)點(diǎn)D,在點(diǎn)D處測得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,.作DE⊥AC于點(diǎn)E,作AF⊥BD于點(diǎn)F.
(1)求AF、AE的長;
(2)若以點(diǎn)為圓心作圓, 、、、E、F五點(diǎn)中至少有1個(gè)點(diǎn)在圓內(nèi),且至少有2個(gè)點(diǎn)在圓外,求的半徑 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com