【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2hx+h的圖象的頂點(diǎn)為點(diǎn)D.
(1)當(dāng)h=﹣1時,求點(diǎn)D的坐標(biāo);
(2)當(dāng)﹣1≤x≤1時,求函數(shù)的最小值m.(用含h的代數(shù)式表示m)
【答案】(1) (﹣1,﹣2);(2) 見解析.
【解析】
(1)把h=-1代入y=x2-2hx+h,化為頂點(diǎn)式,即可求出點(diǎn)D的坐標(biāo);
(2)先根據(jù)二次函數(shù)的性質(zhì)得出x=h時,函數(shù)有最小值h-h2.再分h≤-1,-1<h<1,h≥1三種情況求解即可.
(1)當(dāng)h=-1時,y=x2+2x-1=(x+1)2-2,
則頂點(diǎn)D的坐標(biāo)為(-1,-2);
(2)∵y=x2-2hx+h=(x-h)2+h-h2,
∴x=h時,函數(shù)有最小值h-h2.
①如果h≤-1,那么x=-1時,函數(shù)有最小值,此時m=(-1)2-2h×(-1)+h=1+3h;
②如果-1<h<1,那么x=h時,函數(shù)有最小值,此時m=h-h2;
③如果h≥1,那么x=1時,函數(shù)有最小值,此時m=12-2h×1+h=1-h.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+m交x軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CD與x軸平行,且S△ACD:S△ABD=3:5.
(1)求點(diǎn)A的坐標(biāo);
(2)求此二次函數(shù)的解析式;
(3)點(diǎn)P為直線l上一動點(diǎn),將線段AC繞點(diǎn)P順時針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對應(yīng)點(diǎn),點(diǎn)C,C'是對應(yīng)點(diǎn)).請問:是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點(diǎn)A'的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明利用等腰直角三角板測量旗桿高度的示意圖.等腰直角三角板的斜邊BD與地面AF平行,當(dāng)小明的視線恰好沿BC經(jīng)過旗桿頂部點(diǎn)E時,測量出此時他所在的位置點(diǎn)A與旗桿底部點(diǎn)F的距離為10米.如果小明的眼睛距離地面1.7米,那么旗桿EF的高度為( )
A. 10米 B. 11.7米 C. 10米 D. (5+1.7)米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級6個班的180名學(xué)生即將參加北京市中學(xué)生開放性科學(xué)實(shí)踐活動送課到校課程的學(xué)習(xí).學(xué)習(xí)內(nèi)容包括以下7個領(lǐng)域:A.自然與環(huán)境,B.健康與安全,C.結(jié)構(gòu)與機(jī)械,D.電子與控制,E.?dāng)?shù)據(jù)與信息,F(xiàn).能源與材料,G.人文與歷史.為了解學(xué)生喜歡的課程領(lǐng)域,學(xué)生會開展了一次調(diào)查研究,請將下面的過程補(bǔ)全.
收集數(shù)據(jù)學(xué)生會計(jì)劃調(diào)查30名學(xué)生喜歡的課程領(lǐng)域作為樣本,下面抽樣調(diào)查的對象選擇合理的是 ;(填序號)
①選擇七年級1班、2班各15名學(xué)生作為調(diào)查對象
②選擇機(jī)器人社團(tuán)的30名學(xué)生作為調(diào)查對象
③選擇各班學(xué)號為6的倍數(shù)的30名學(xué)生作為調(diào)查對象
調(diào)查對象確定后,調(diào)查小組獲得了30名學(xué)生喜歡的課程領(lǐng)域如下:
A,C,D,D,G,G,F(xiàn),E,B,G,
C,C,G,D,B,A,G,F(xiàn),F(xiàn),A,
G,B,F(xiàn),G,E,G,A,B,G,G
整理、描述數(shù)據(jù)整理、描述樣本數(shù)據(jù),繪制統(tǒng)計(jì)圖表如下,請補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
某校七年級學(xué)生喜歡的課程領(lǐng)域統(tǒng)計(jì)表
課程領(lǐng)域 | 人數(shù) |
A | 4 |
B | 4 |
C | 3 |
D | 3 |
E | 2 |
F | 4 |
G | 10 |
合計(jì) | 30 |
分析數(shù)據(jù)、推斷結(jié)論請你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次送課到校的課程領(lǐng)域,你的推薦是 (填A(yù)﹣G的字母代號),估計(jì)全年級大約有 名學(xué)生喜歡這個課程領(lǐng)域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點(diǎn)為射線CB上一動點(diǎn),連接AE,作AF⊥AE且AF=AE.
(1)如圖1,過F點(diǎn)作FD⊥AC交AC于D點(diǎn),求證:EC+CD=DF;
(2)如圖2,連接BF交AC于G點(diǎn),若 =3,求證:E點(diǎn)為BC中點(diǎn);
(3)當(dāng)E點(diǎn)在射線CB上,連接BF與直線AC交于G點(diǎn),若,則=_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點(diǎn)D是AC的中點(diǎn).將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點(diǎn)分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=(m+1)x2﹣2(m+1)x﹣m+3.
(1)求該二次函數(shù)的對稱軸;
(2)過動點(diǎn)C(0,n)作直線l⊥y軸,當(dāng)直線l與拋物線只有一個公共點(diǎn)時,求n關(guān)于m的函數(shù)表達(dá)式;
(3)若對于每一個給定的x值,它所對應(yīng)的函數(shù)值都不大于6,求整數(shù)m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com