分析 (1)將點A的坐標代入拋物線解析式,即可求出a的值;
(2)根據拋物線的解析式,求出頂點P的坐標,根據對稱軸,求出點B,C的坐標,根據待定系數法求出直線BP、CP的解析式,求出點D、E的坐標,進而求出DE,BC的長度,即可解得;
(3)連接CC′交直線BP于點F,則CC′⊥BP,且CF=C′F,求出CC′的解析式,進而求得點F的坐標,根據CF=C′F,即可解答.
解答 解:(1)把點A(0,m)代入y=$a(x-2\sqrt{2}m)^{2}-m$,
得:2am2-m=m,
am-1=0,
∵am>1,
∴a=$\frac{1}{m}$,
∴y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$,
故答案為:y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$;
(2)DE=$\frac{1}{2}$BC.
理由:又拋物線y=$\frac{1}{m}(x-\sqrt{2}m)^{2}-m$,可得拋物線的頂點坐標P($\sqrt{2}$m,-m),
由l:x=$\sqrt{2}$m,可得:點B(2$\sqrt{2}$m,m),
∴點C(2$\sqrt{2}$m,0).
設直線BP的解析式為y=kx+b,點P($\sqrt{2}$m,-m)和點B(2$\sqrt{2}$m,m)在這條直線上,
得:$\left\{\begin{array}{l}{\sqrt{2}mk+b=-m}\\{2\sqrt{2}mk+b=m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=\sqrt{2}}\\{b=-3m}\end{array}\right.$,
∴直線BP的解析式為:y=$\sqrt{2}$x-3m,
令y=0,$\sqrt{2}$x-3m=0,解得:x=$\frac{3\sqrt{2}}{2}m$,
∴點D($\frac{3\sqrt{2}}{2}m$,0);
設直線CP的解析式為y=k1x+b1,點P($\sqrt{2}$m,-m)和點C(2$\sqrt{2}$m,0)在這條直線上,
得:$\left\{\begin{array}{l}{2\sqrt{2}m{k}_{1}+_{1}=0}\\{\sqrt{2}m{k}_{1}+_{1}=-m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{k}_{1}=\frac{\sqrt{2}}{2}}\\{_{1}=-2m}\end{array}\right.$,
∴直線CP的解析式為:y=$\frac{\sqrt{2}}{2}$x-2m;
拋物線與直線CP相交于點E,可得:$\left\{\begin{array}{l}{y=\frac{1}{m}(x-2m)^{2}-m}\\{y=\frac{\sqrt{2}}{2}x-2m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{x}_{1}=\frac{3\sqrt{2}}{2}m}\\{{y}_{1}=-\frac{m}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=\sqrt{2}m}\\{{y}_{2}=-m}\end{array}\right.$(舍去),
∴點E($\frac{3\sqrt{2}}{2}m$,-$\frac{m}{2}$);
∵xD=xE,
∴DE⊥x軸,
∴DE=yD-yE=$\frac{m}{2}$,BC=yB-yC=m=2DE,
即DE=$\frac{1}{2}$BC;
(3)C′($\frac{4\sqrt{2}}{3}m$,$\frac{2}{3}m$).
連接CC′,交直線BP于點F,
∵BC′=BC,∠C′BF=∠CBF,
∴CC′⊥BP,CF=C′F,
設直線BP的解析式為y=kx+b,點B(2$\sqrt{2}$m,m),P($\sqrt{2}$m,-m)在直線上,
∴$\left\{\begin{array}{l}{2\sqrt{2}mk+b=m}\\{\sqrt{2}mk+b=-m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=\sqrt{2}}\\{b=-3m}\end{array}\right.$,
∴直線BP的解析式為:y=$\sqrt{2}$x-3m,
∵CC′⊥BP,
∴設直線CC′的解析式為:y=$-\frac{\sqrt{2}}{2}$x+b1,
∴$-\frac{\sqrt{2}}{2}×2\sqrt{2}m+_{1}=0$,解得:b1=2m,
聯(lián)立①②,得:$\left\{\begin{array}{l}{y=\sqrt{2}x-3m}\\{y=-\frac{\sqrt{2}}{2}x+2m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{5\sqrt{2}}{3}m}\\{y=\frac{m}{3}}\end{array}\right.$,
∴點F($\frac{5\sqrt{2}}{3}m$,$\frac{m}{3}$),
∴CF=$\sqrt{(\frac{5\sqrt{2}}{3}m-2\sqrt{2}m)^{2}+(\frac{m}{3})^{2}}$=$\frac{\sqrt{3}}{3}m$,
設點C′的坐標為(a,$-\frac{\sqrt{2}}{2}a+2m$),
∴C′F=$\sqrt{(\frac{5\sqrt{2}}{3}m-a)^{2}+(\frac{m}{3}+\frac{\sqrt{2}}{2}a-2m)^{2}}$=$\frac{\sqrt{3}}{3}m$,解得:a=$\frac{4\sqrt{2}}{3}m$,
∴$-\frac{\sqrt{2}}{2}a+2m=\frac{2}{3}m$,
∴C′($\frac{4\sqrt{2}}{3}m$,$\frac{2}{3}m$).
點評 本題主要考查二次函數與一次函數的綜合運用,能夠熟練求出直線的解析式和各點的坐標是解決此題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com