如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值,若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求△PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
解:(1)∵B(4,m)在直線線y=x+2上,
∴m=4+2=6,
∴B(4,6),
∵A(,)、B(4,6)在拋物線y=ax2+bx﹣4上,
∴,
∵c=6,
∴a=2,b=﹣8,
∴y=2x2﹣8x+6.
(2)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+2),則C點(diǎn)的坐標(biāo)為(n,2n2﹣8n+6),
∴PC=(n+2)﹣(2n2﹣8n+6),
=﹣2n2+9n﹣4,
=﹣2(n﹣)2+,
∵PC>0,
∴當(dāng)n=時(shí),線段PC最大且為.
(3)設(shè)直線AC的解析式為y=﹣x+b,
把A(,)代入得:=﹣+b,解得:b=3,
∴直線AC解析式:y=﹣x+3,
點(diǎn)C在拋物線上,設(shè)C(m,2m2﹣8m+6),代入y=﹣x+3得:2m2﹣8m+6=﹣m+3,
整理得:2m2﹣7m+3=0,
解得;m=3或m=,
∴P(3,0)或P(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線y=k1x+b與雙曲線y= 相交于A(1,2)、B(m,﹣1)兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)求△OAB的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠A0B的兩邊0A,0B均為平面反光鏡,∠A0B=40°.在0B上有一點(diǎn)P,從P點(diǎn)射出一束光線經(jīng)0A上的Q點(diǎn)反射后,反射光線QR恰好與0B平行,則∠QPB的度數(shù)是( )
A. 60° B. 80° C. 100° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列各式計(jì)算正確的是( 。
| A. | a2+2a3=3a5 | B. | (a2)3=a5 | C. | a6÷a2=a3 | D. | a•a2=a3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
有四張正面分別標(biāo)有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n.
(1)請(qǐng)畫(huà)出樹(shù)狀圖并寫(xiě)出(m,n)所有可能的結(jié)果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第二、三、四象限的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com