【題目】如圖,在中,,點DE分別是邊ABBC的中點,過點AED的延長線于點F,連接BF。

1)求證:四邊形ACEF是菱形;

2)若四邊形AEBF也是菱形,直接寫出線段AB與線段AC的關(guān)系。

【答案】1)見解析;(2,.

【解析】

1)由題意得出,DE是的中位線,得出四邊形ACEF是平行四邊形,再根據(jù)點E是邊BC的中點得,即可證明.

2)根據(jù)菱形的性質(zhì),得出,,即可得出,再根據(jù)直角三角形斜邊的中線得出EC=BC=AC=AE,推出為等邊三角形,即可求出.

1)證明:DE分別是邊AB、BC的中點,

DE是的中位線,

,

,

四邊形ACEF是平行四邊形,

E是邊BC的中點,

,

,

是菱形.

2是菱形

由(1)知,是菱形

BC=2AC,EBC的中點

AE=BC

EC=BC=AC=AE

為等邊三角形

C=60°

綜上,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標(biāo)有數(shù)字12的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成3個相等的扇形,并分別標(biāo)有數(shù)字﹣1,34(如圖所示),小明把卡片背面朝上洗勻后從中隨機(jī)抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針?biāo)趨^(qū)域內(nèi)的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域內(nèi)為止).

1)請用列表法或畫樹形圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;

2)求出兩個數(shù)字之積為負(fù)數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,直線 軸,軸分別交于點 ,點 。

1)求點和點的坐標(biāo);

2)若點 軸上,且 求點的坐標(biāo)。

3)在軸是否存在點 ,使三角形 是等腰三角形,若存在。請求出點坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的圓OAD、AC分別交于點EF,且∠ACB=∠DCE

1)判斷直線CE⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若tan∠ACB=,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019423日是第24個世界讀書日.為了推進(jìn)中華傳統(tǒng)文化教育,營造濃郁的讀書氛圍,某校舉辦了“讓讀書成為習(xí)慣,讓書香飄滿校園”主題活動,為此特為七年級兩個班級訂購了一批新的圖書.七年級兩個班級訂購圖書的情況如下表:

四大名著/套

老舍文集/套

總費用/元

七年級(1)班

2

4

460

七年級(2)班

3

2

530

1)求四大名著和老舍文集每套各是多少元?

2)學(xué)校準(zhǔn)備再購買四大名著和老舍文集共10套,總費用不超過800元,求學(xué)校最多能買幾套四大名著?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,的平分線,的延長線.

1)當(dāng)時,求的度數(shù);

2)當(dāng)時,求的度數(shù);

3)通過(1)(2)的計算,直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)用,,填空:      

2)由上可知:①|1|   ;

||   

3)計算:|1|+||+||+||+…+||(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AO,B三點在同一條直線上,OD平分∠AOC,OE平分∠BOC,

1)若∠AOC=90°,如圖1,則∠DOE= °;

2)若∠AOC=50°,如圖2,求∠DOE的度數(shù);

3)由上面的計算,你認(rèn)為∠DOE= °;

4)若∠AOC=α,(0°< α <180°)如圖3,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案