【題目】如圖,在□ABCD中,按以下步驟作圖:①以點(diǎn)A為圓心,AB的長為半徑作弧,交AD于點(diǎn)F;②分別以點(diǎn)F,B為圓心大于FB的長為半徑作弧,兩弧在∠DAB內(nèi)交于點(diǎn)G;③作射線AG,交邊BC于點(diǎn)E,連接EF.若AB=5,BF=8,則四邊形ABEF的面積為( )
A.12B.20C.24D.48
【答案】C
【解析】
如圖,設(shè)AE交BF于點(diǎn)O.證明四邊形ABEF是菱形,利用勾股定理求出OA即可得出AE, 根據(jù)菱形的面積等于對角線乘積的一半即可解決問題.
解:如圖,設(shè)AE交BF于點(diǎn)O.
由作圖可知:AB=AF,AE⊥BF,
∴OB=OF,∠BAE=∠EAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠EAF=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=AF,∵AF∥BE,
∴四邊形ABEF是平行四邊形,
∵AB=AF,
∴四邊形ABEF是菱形,
∴OA=OE,OB=OF=4,
在Rt△AOB中,∵∠AOB=90°,
∴AE=2OA=6.
∴菱形ABEF的面積=×8×6=24
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,貴陽市某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?/span>30°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長都是1.均在網(wǎng)格的格點(diǎn)上.
(1)直接寫出四邊形的面積與、的長度;
(2)是直角嗎?請說出你的判斷理由.
(3)找到一個(gè)格點(diǎn),并畫出四邊形,使得其面積與四邊形的面積相等.
解:(1)___________;___________;___________.
(2)判斷___________(填“是”或“否”)
理由_________________________________________________;
(3)在圖中畫出一個(gè)滿足條件的四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,則EF的最小值為( )
A.2B.2.2C.2.4D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,為外角的平分線,.
(1)求證:四邊形為矩形;
(2)當(dāng)與滿足什么數(shù)量關(guān)系時(shí),四邊形是正方形?并給予證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一五班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)學(xué)校決定派該班30名學(xué)生勤工儉學(xué),練習(xí)制作樂高零件,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少需要派多少名男學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=﹣2x+4與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)C為線段OA上一動(dòng)點(diǎn),連接BC,作BC的中垂線分別交OB、AB交于點(diǎn)D、E.
(l)當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),DE= ;
(2)當(dāng)CE∥OB時(shí),證明此時(shí)四邊形BDCE為菱形;
(3)在點(diǎn)C的運(yùn)動(dòng)過程中,直接寫出OD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,四邊形為平行四邊形,在軸上一定點(diǎn),為軸上一動(dòng)點(diǎn),且點(diǎn)從原點(diǎn)出發(fā),沿著軸正半軸方向以每秒個(gè)單位長度運(yùn)動(dòng),已知點(diǎn)運(yùn)動(dòng)時(shí)間為.
(1)點(diǎn)坐標(biāo)為________,點(diǎn)坐標(biāo)為________;(直接寫出結(jié)果,可用表示)
(2)當(dāng)為何值時(shí),為等腰三角形;
(3)點(diǎn)在運(yùn)動(dòng)過程中,是否存在,使得,若存在,請求出的值,若不存在,請說明理由!
查看答案和解析>>