【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們在同一坐標(biāo)系中的圖象可以是( 。
A. B.
C. D.
【答案】B
【解析】
根據(jù)一次函數(shù)的位置確定m、n的大小,看是否符合mn<0,計算m-n確定符號,即可確定雙曲線的位置.
解:A、由一次函數(shù)圖象過二、四象限,得m<0,交y軸正半軸,則n>0,
此時mn<0;則m-n<0,故反比例函數(shù)圖象分布在第二四象限,故本選項錯誤;
B、由一次函數(shù)圖象過二、四象限,得m<0,交y軸正半軸,則n>0,滿足mn<0,
∵m<0,n>0,
∴m-n<0,
∴反比例函數(shù)y=的圖象分布在二、四象限,故本選項正確;
C、由一次函數(shù)圖象過一、三象限,得m>0,交y軸負(fù)半軸,則n<0,
此時,mn<0,則m-n>0,反比例函數(shù)y=的圖象分布在第一、三象限,故本選項錯誤;
D、由一次函數(shù)圖象過一、三象限,得m>0,交y軸正半軸,則n>0,
此時,mn>0,故本選項錯誤;
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結(jié)論:①S△ABF=S△ADF②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是( )
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,對△ABC 進(jìn)行循環(huán)往復(fù)的軸對稱或中心對稱變換,若原來點 A 坐標(biāo)是(a,b),則經(jīng)過第 2012 次變換后所得的 A 點坐標(biāo)是( )
A. (a,b) B. (a,﹣b) C. (﹣a,b) D. (﹣a,﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣1,3)和點B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當(dāng)x為何值時,kx+b≥(請直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m﹣2)是一個反比例函數(shù).
(1)求m的值;
(2)它的圖象位于哪些象限;
(3)當(dāng)時,求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店如果將進(jìn)貨價為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價,減少進(jìn)貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.
(1)要使每天獲得利潤700元,且進(jìn)貨量盡可能減少,請你幫忙確定售價;
(2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點,OA=2,以O(shè)為圓心,以O(shè)A為半徑的圓與CB相切于點E,與AB相交于點F,連接OE、OF,則圖中陰影部分的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點,其中t>0,函數(shù)的圖象分別與線段BC,AC交于點P,Q.若S△PAB-S△PQB=t,則t的值為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com