【題目】如圖,AB是⊙O的直徑,D是弦AC的延長線上一點(diǎn),且CD=AC,DB的延長線交⊙O于點(diǎn)E.

(1)求證:CD=CE;

(2)連結(jié)AE,若∠D=25°,求∠BAE的度數(shù).

【答案】(1)證明見解析;(2)40°.

【解析】

(1) 連接BC,利用直徑所對(duì)的圓周角是直角、線段垂直平分線性質(zhì)、同弧所對(duì)的圓周角相等、等角對(duì)等邊即可證明.

(2)利用三角形外角等于不相鄰的兩個(gè)內(nèi)角和、利用直徑所對(duì)的圓周角是直角、直角三角形兩銳角互余即可解答.

(1)證明:連接BC,

AB是⊙O的直徑,

∴∠ABC=90°,即BCAD,

CD=AC,

AB=BD,

∴∠A=D,

∴∠CEB=A,

∴∠CEB=D,

CE=CD.

(2)解:連接AE.

∵∠A BE=A+D=50°,

AB是⊙O的直徑,

∴∠AEB=90°,

∴∠BAE=90°﹣50°=40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列分式方程

1

2

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)、,對(duì)連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC與△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=D=90°,AB=AC=.現(xiàn)將△DEF與△ABC按如圖所示的方式疊放在一起,使△ABC保持不動(dòng),△DEF運(yùn)動(dòng),且滿足點(diǎn)E在邊BC上運(yùn)動(dòng)(不與B,C重合),邊DE始終經(jīng)過點(diǎn)A,EFAC交于點(diǎn)M.在△DEF運(yùn)動(dòng)過程中,若△AEM能構(gòu)成等腰三角形,則BE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB6,BC8,E為直線BC上一點(diǎn).

1)如圖1,當(dāng)E在線段BC上,且DEAD時(shí),求BE的長;

2)如圖2,點(diǎn)EBC延長長線上一點(diǎn),若BDBE,連接DE,MED的中點(diǎn),連接AM,CM,求證:AMCM

3)如圖3,在(2)條件下,P,QAD邊上的兩個(gè)動(dòng)點(diǎn),且PQ5,連接PBMQ、BM,求四邊形PBMQ的周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,.作DEAC于點(diǎn)E,作AFBD于點(diǎn)F

(1)求AF、AE的長;

(2)若以點(diǎn)為圓心作圓, 、、EF五點(diǎn)中至少有1個(gè)點(diǎn)在圓內(nèi),且至少有2個(gè)點(diǎn)在圓外,求的半徑 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊分別切⊙OD,E,F(xiàn).

(1)若∠A=40°,求∠DEF的度數(shù);

(2)AB=AC=13,BC=10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,BC=5,點(diǎn)P是邊AC上的一個(gè)動(dòng)點(diǎn),APD=∠ABC,ADBC,連接CD

(1)求證AD=2AP;

(2)如圖,若BACD的延長線交于點(diǎn)M,AP=1,求AM的長;

(3)如圖,若ABDC的延長線交于點(diǎn)N,當(dāng)CDPBCN相似時(shí),求證點(diǎn)PAC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,E、F 是平行四邊形 ABCD 的對(duì)角線 AC 上的兩點(diǎn),AE=CF

求證:(1EB DF ;

2EBDF

查看答案和解析>>

同步練習(xí)冊(cè)答案