【題目】如圖,在△ABC中,AB=AC=10,BC=5,點P是邊AC上的一個動點,∠APD=∠ABC,AD∥BC,連接CD.
(1)求證AD=2AP;
(2)如圖①,若BA與CD的延長線交于點M,AP=1,求AM的長;
(3)如圖②,若AB與DC的延長線交于點N,當(dāng)△CDP與△BCN相似時,求證點P是AC的中點.
【答案】(1)見解析;(2)AM=;(3)點P是AC的中點.
【解析】
(1)證明△DAP∽△ACB,得,即可得解;
(2)證明△MAD∽△MBC,得,即可得解;
(3)證明△NBC∽△NAD,得,故;由△CPD∽△CBN,得,,求解即可.
(1)證明:∵AD∥BC
∴∠DAP=∠ACB
又∵∠APD=∠ABC
∴△DAP∽△ACB
∴
∴
∴AD=2AP
(2)∵AP=1,∴AD=2AP=2
∵AD∥BC
∴△MAD∽△MBC
∴
∴
∴AM=
(3)∵∠APD=∠ABC
∴∠CPD=∠CBN
又∵∠ACP>∠N
∴當(dāng)△CDP與△BCN相似時,只能是△CPD∽△CBN
設(shè)AP=x,BN=y,則AD=PD=2x,CP=10-x
∵△CPD∽△CBN,∴,∴
∵AD∥BC,∴△NBC∽△NAD,∴,∴
解出x=5,∴點P是AC的中點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點是邊上一點,連接,把沿折疊,使點落在點處,當(dāng)為直角三角形時,的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D是弦AC的延長線上一點,且CD=AC,DB的延長線交⊙O于點E.
(1)求證:CD=CE;
(2)連結(jié)AE,若∠D=25°,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BD是∠ABC的角平分線,過點D分別作DE⊥AB,DF⊥BC,垂足分別為E、F.
(1)求證:△AED≌△CFD;
(2)若AB=10,BC=8,∠ABC=60°,求BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,Rt△ABC的頂點均在格點上,在建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-6,1),點B的坐標(biāo)為(-3,1),點C的坐標(biāo)為(-3,3).
(1)將原來的Rt△ABC繞點O順時針旋轉(zhuǎn)90°得到Rt△A1B1C1,試在圖上畫出Rt△A1B1C1的圖形.
(2)求線段BC掃過的面積.
(3)求點A旋轉(zhuǎn)到A1路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(-4,1)、B(-1,1)、C(-4,3).
(1)畫出Rt△ABC關(guān)于原點O成中心對稱的圖形Rt△A1B1C1;
(2)若Rt△ABC與Rt△A2BC2關(guān)于點B中心對稱,則點A2的坐標(biāo)為 、C2的坐標(biāo)為 .
(3)求點A繞點B旋轉(zhuǎn)180°到點A2時,點A在運動過程中經(jīng)過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖,若DF⊥AC,垂足為F,證明:DE=DF
(2)如圖,將(1)中的∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由。
(3)將∠EDF繼續(xù)繞點D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎? 直接說出結(jié)論,不必說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標(biāo)為(﹣1,0),對稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個交點B的坐標(biāo);
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標(biāo);
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設(shè)點P運動的時間為t秒.
①當(dāng)t為 秒時,△PAD的周長最小?當(dāng)t為 秒時,△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上的點F處,則F、C兩點的距離為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com