如圖,PC為⊙O的切線,C為切點(diǎn),PAB是過O點(diǎn)的割線,CD⊥AB于點(diǎn)D,若數(shù)學(xué)公式,PC=10cm,求△BCD的面積.

解法一:連接AC,
∵AB是⊙O的直徑,點(diǎn)C在⊙O上,
∴∠ACB=90°
∵CD⊥AB于點(diǎn)D,
∴∠ADC=∠BCA=90°,
∠ACD=90°-∠BAC=∠B.
∵tanB=,
∴tan∠ACD=

設(shè)AD=x(x>0),則CD=2x,DB=4x,AB=5x.
∵PC切⊙O于點(diǎn)C,點(diǎn)B在⊙O上,
∴∠PCA=∠B,
∵∠P=∠P,
∴△PAC∽△PCB.

∵PC=10,
∴PA=5,
∵PC切⊙O于點(diǎn)C,PAB是⊙O的割線,
∴根據(jù)切割線定理:PC2=PA•PB,
∴102=5(5+5x),
解得x=3,
∴AD=3,CD=6,DB=12.
∴S△BCD=CD•DB=×6×12=36,
即△BCD的面積為36cm2

解法二:同解法一,由△PAC∽△PCB得
∵PC=10,
∴PB=20,
由切割線定理,得PC2=PA•PB,
∴PA=,
∴AB=PB-PA=15,
∵AD+DB=x+4x=15,
解得x=3;(x同證法一)
∴CD=2x=6,DB=4x=12,
S△BCD=CD•DB=×6×12=36.
即△BCD的面積為36cm2
分析:連接AC,由弦切角定理知∠PCA=∠B,易證得△PCA∽△PBC,得PC:PB=AC:AB,而AC:AB正好是tanB,由此可求出PB的長,進(jìn)而可由切割線定理求出PA的長,也就得到了AB的長;在Rt△ACB中,易證得∠ACD=∠B,那么tanB=tan∠ACD,由此可得CD=2AD,BD=2CD,即BD=4AD,聯(lián)立AD+BD=AB(AB的長已求得),即可得到AD、BD、CD的長,進(jìn)而可由三角形的面積公式求出△BCD的面積.
點(diǎn)評:此題主要考查了圓周角定理、切割線定理、弦切角定理及相似三角形的判定和性質(zhì)等知識(shí)的綜合應(yīng)用,能夠正確的構(gòu)建出相似三角形,并發(fā)現(xiàn)PA、PB與tanB的關(guān)系是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,AB為⊙O的直徑,P為AB延長線上一點(diǎn),PC切⊙O于C,若PB=2,AB=6,則PC=
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為⊙O的直徑,P為AB延長線上的一點(diǎn),PC切⊙O于C,tan∠P=
3
4
,則sin∠A=( 。
A、
3
5
B、
2
5
C、
5
5
D、
5
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB為⊙O的弦,P為AB延長線上的一點(diǎn),PC切⊙O于C,CD為⊙O的直徑,CD交AB于E,DE=2,AE=3,BE=6,則PB=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑,C為⊙O上的點(diǎn),PA切于⊙O于點(diǎn)A,PA=PC,∠BAC=30°,
(1)求證:PC是⊙O的切線.
(2)若⊙O的半徑為1,求PC的長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為⊙O的直徑AB的延長線上一點(diǎn),PC切⊙O于C,若∠P=26°,則∠A=
32°
32°

查看答案和解析>>

同步練習(xí)冊答案