【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1: ,求旗桿AB的高度( ,結果精確到個位).

【答案】解:延長BD,AC交于點E,過點D作DF⊥AE于點F.

∵i=tan∠DCF= =

∴∠DCF=30°.

又∵∠DAC=15°,

∴∠ADC=15°.

∴CD=AC=10.

在Rt△DCF中,DF=CDsin30°=10× =5(米),

CF=CDcos30°=10× =5 ,∠CDF=60°.

∴∠BDF=45°+15°+60°=120°,

∴∠E=120°﹣90°=30°,

在Rt△DFE中,EF= = =5

∴AE=10+5 +5 =10 +10.

在Rt△BAE中,BA=AEtanE=(10 +10)× =10+ ≈16(米).

答:旗桿AB的高度約為16米.


【解析】根據(jù)解直角三角形中斜坡CD的坡度為i,由特殊角的三角函數(shù)值,得到∠DCF=30°;求出DF=CDsin30°、CF=CDcos30°的值,得到AE的值,在Rt△BAE中,求出BA=AEtanE的值.
【考點精析】關于本題考查的關于仰角俯角問題,需要了解仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(-21),B(-3,-2),C1,-2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1;

2)點A1B1,C1的坐標分別為     、  

3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰ABC的底邊BC13cm,D是腰AB上一點,且CD12cm, BD5cm

1)求證:BDC是直角三角形;

2)求ABC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:

根據(jù)以上信息解答下列問題:

1)求A,B兩種商品的單價;

2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點在直線上,

1)直線解析式為 ;

2)畫出該一次函數(shù)的圖象;

3)將直線向上平移個單位長度得到直線軸的交點的坐標為 ;

4)直線與直線相交于點,點坐標為

5)三角形ABC的面積為 ;

6)由圖象可知不等式的解集為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,DAB上一點,DFAC于點E,AEECDEEF,則下列說法中:①∠ADEEFC②∠ADEECFFEC180°;③∠BBCF180°;SABCS四邊形DBCF.正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CE平分∠BCD,1=2=70°,3=40°,ABCD是否平行?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ACDF中,AC=DF,點BCD上,點EDF上,BC=DE=a,AC=BD=bAB=BE=c,且ABBE

1)用兩種不同的方法表示長方形ACDF的面積S

方法一:S=

方法二:S=

2)求a,bc之間的等量關系(需要化簡)

3)請直接運用(2)中的結論,求當c=5,a=3S的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你用學習“一次函數(shù)”時積累的經驗和方法研究函數(shù)的圖象和性質,并解決問題.

完成下列步驟,畫出函數(shù)的圖象;

列表、填空;

x

0

1

2

3

y

3

______

1

______

1

2

3

描點:

連線

觀察圖象,當x______時,yx的增大而增大;

結合圖象,不等式的解集為______

查看答案和解析>>

同步練習冊答案