【題目】如圖,AC是⊙O的直徑,AB與⊙O相切于點(diǎn)A.四邊形ABCD是平行四邊形,BC交⊙O于點(diǎn)E

1)證明直線CD與⊙O相切;

2)若⊙O的半徑為5 cm,弦CE的長(zhǎng)為8 cm,求AB的長(zhǎng).

【答案】(1)見(jiàn)解析;(2) 7.5 cm.

【解析】

(1)根據(jù)題意,易得∠CAB=90°,又由四邊形ABCD是平行四邊形,結(jié)合平行四邊形的性質(zhì)AB∥CD,可得∠CAB=∠ACD=90°,故直線CD與⊙O相切;

(2)連接AE,易得△CAE∽△CBA,進(jìn)而可得=,在Rt△CAE中,由勾股定理可得AE的值,代入關(guān)系式,可得答案.

解:(1)直線CD⊙O相切.

理由如下:

∵AC⊙O的直徑,AB⊙O相切于點(diǎn)A,

∴AC⊥AB,∴∠CAB=90.

ABCD中,AB∥CD,∴∠ACD=90,

∴AC⊥CD.

點(diǎn)C⊙O上,

直線CD⊙O相切;

(2)如圖,連接AE,則AE⊥BC,

Rt△CAE中,

AE===6 cm.

△CAE∽△CBA,得=,

∴AB=7.5 cm.

故答案為:(1)證明過(guò)程見(jiàn)解析;(2)7.5 cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,把繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,點(diǎn).

1)若,求得度數(shù);

2)若,,求邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過(guò)A,D兩點(diǎn)的⊙O與邊BC相切于點(diǎn)E,則⊙O的半徑為( 。

A. 4 B. C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)期間,某食品店平均每天可賣出300只粽子,賣出1只粽子的利潤(rùn)是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣出100只粽子.為了使每天獲取的利潤(rùn)更多,該店決定把零售單價(jià)下降m(0<m<1)元.

(1)零售單價(jià)下降m元后,該店平均每天可賣出_____只粽子,利潤(rùn)為_(kāi)____元.

(2)在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使該店每天獲取的利潤(rùn)是420元并且賣出的粽子更多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在二次函數(shù)y=-x2bxc中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:

x

……

2

0

3

4

……

y

……

7

m

n

7

……

m、n的大小關(guān)系為( )

A. mn B. mn C. mn D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)(k>0)有以下四個(gè)結(jié)論:

①這是y關(guān)于x的反比例函數(shù);②當(dāng)x>0時(shí),y的值隨著x的增大而減。虎酆瘮(shù)圖象與x軸有且只有一個(gè)交點(diǎn);④函數(shù)圖象關(guān)于點(diǎn)(0,3)成中心對(duì)稱.

其中正確的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,對(duì)正方形ABCD及其內(nèi)部的每個(gè)點(diǎn)進(jìn)行如下操作:把每個(gè)點(diǎn)的橫、縱坐標(biāo)都乘以同一個(gè)實(shí)數(shù)a,將得到的點(diǎn)先向右平移m個(gè)單位,再向上平移n個(gè)單位(m>0,n>0),得到正方形A'B'C'D'及其內(nèi)部的點(diǎn),其中點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A',B'.已知正方形ABCD內(nèi)部的一個(gè)點(diǎn)F經(jīng)過(guò)上述操作后得到的對(duì)應(yīng)點(diǎn)F'與點(diǎn)F重合,則點(diǎn)F的坐標(biāo)是(  )

A. (1,4) B. (1,5) C. (﹣1,4) D. (4,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,P是線段AB上的一個(gè)動(dòng)點(diǎn).

(1)若AD=2,BC=6,AB=8,且以A,D,P為頂點(diǎn)的三角形與以B,C,P為頂點(diǎn)的三角形相似,求AP的長(zhǎng);

(2)若AD=a,BC=b,AB=m,則當(dāng)a,b,m滿足什么關(guān)系時(shí),一定存在點(diǎn)P使△ADP∽△BPC?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經(jīng)過(guò)點(diǎn)A,反比例函數(shù)y2=的圖象經(jīng)過(guò)點(diǎn)B,則下列關(guān)于m,n的關(guān)系正確的是(  )

A. m=-3n B. m=-n C. m=-n D. m=n

查看答案和解析>>

同步練習(xí)冊(cè)答案