【題目】對于函數(shù)(k>0)有以下四個結(jié)論:
①這是y關(guān)于x的反比例函數(shù);②當(dāng)x>0時,y的值隨著x的增大而減;③函數(shù)圖象與x軸有且只有一個交點(diǎn);④函數(shù)圖象關(guān)于點(diǎn)(0,3)成中心對稱.
其中正確的是( )
A. B. C. D.
【答案】D
【解析】
根據(jù)反比例函數(shù)的定義與性質(zhì)對各選項(xiàng)進(jìn)行逐一分析即可.
解:①∵此函數(shù)可化為y=3+,不符合反比例函數(shù)的形式,∴不是y關(guān)于x的反比例函數(shù),故本小題錯誤;
②∵反比例函數(shù)y=(k>0)中,當(dāng)x>0時,y的值隨著x的增大而減小,
∴函數(shù)y=3+中,當(dāng)x>0時,y的值隨著x的增大而減小,故本小題正確;
③∵一次函數(shù)y=3與x軸只有一個交點(diǎn),
∴函數(shù)y=3+與x軸只有一個交點(diǎn),故本小題正確;
④∵反比例函數(shù)y=(k>0)的圖象關(guān)于原點(diǎn)對稱,
∴題中函數(shù)圖象關(guān)于點(diǎn)(0,3)成中心對稱,故本小題正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,過C作CE⊥AD垂足為E,且∠EDC=∠BDC.
(1)求證:CE是⊙O的切線;
(2)若DE+CE=4,AB=6,求BD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖,當(dāng)點(diǎn)E在BD上時.求證:FD=CD;
(2)當(dāng)α為何值時,GC=GB?畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園要建造一個圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是 y=﹣x2+2x+.
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時,才能使噴出的水流都落在水池內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,AB與⊙O相切于點(diǎn)A.四邊形ABCD是平行四邊形,BC交⊙O于點(diǎn)E.
(1)證明直線CD與⊙O相切;
(2)若⊙O的半徑為5 cm,弦CE的長為8 cm,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,直線y=mx與雙曲線相交于A(﹣1,a)、B兩點(diǎn),BC⊥x軸,垂足為C,△AOC的面積是1.
(1)求m、n的值;
(2)求直線AC的解析式.
(3)點(diǎn)P在雙曲線上,且△POC的面積等于△ABC面積的,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+2ax+c(a>0,c<0),與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C,A點(diǎn)坐標(biāo)為(﹣3,0),拋物線頂點(diǎn)為D,△ACD的面積為3.
(1)求二次函數(shù)解析式;
(2)點(diǎn)P(m,n)是拋物線第三象限內(nèi)一點(diǎn),P關(guān)于原點(diǎn)的對稱點(diǎn)Q在第一象限內(nèi),當(dāng)QB2取最小值時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c 的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與 y 軸交于點(diǎn) C(0,-3)在拋物線上.
(1)求拋物線的表達(dá)式;
(2)拋物線的對稱軸上有一動點(diǎn) P,求出當(dāng) PB+PC 最小時點(diǎn) P的坐標(biāo);
(3)若拋物線上有一動點(diǎn)Q,使△ABQ的面積為6,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第16題,4分)如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx(k>0)分別交反比例函數(shù)和在第一象限的圖象于點(diǎn)A,B,過點(diǎn)B作 BD⊥x軸于點(diǎn)D,交的圖象于點(diǎn)C,連結(jié)AC.若△ABC是等腰三角形,則k的值是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com