【題目】拋物線y=ax2+3與x軸的兩個(gè)交點(diǎn)分別為(m,0)和(n,0),則當(dāng)x=m+n時(shí),y的值為 .
【答案】3
【解析】解:∵拋物線y=ax2+3與x軸的兩個(gè)交點(diǎn)分別為(m,0)和(n,0), ∴該拋物線的對(duì)稱軸方程為﹣ = ,即m+n=0,
∴x=m+n=0,
∴y=0+3=3,即y=3.
故答案是:3.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解拋物線與坐標(biāo)軸的交點(diǎn)(一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)O為直線AB上一點(diǎn),將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.
(1)如圖1,將三角板的一邊ON與射線OB重合,過點(diǎn)O在三角板的內(nèi)部,作射線OC,使∠NOC:∠MOC=2:1,求∠AOC的度數(shù);
(2)如圖2,將三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度到圖2的位置,過點(diǎn)O在三角板MON的內(nèi)部作射線OC,使得OC恰好是∠MOB對(duì)的角平分線,此時(shí)∠AOM與∠NOC滿足怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠AOC=60°,將一把直角三角尺的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使點(diǎn)N在OC的反向延長(zhǎng)線上,請(qǐng)直接寫出圖中∠MOB的度數(shù);
(2)將圖1中的三角尺繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù);
(3)將圖1中的三角尺繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖4,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄?/span>∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為4,OA為半徑,CD為弦,OA與CD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,連接PC.
(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線分別交x軸、y軸于A、B兩點(diǎn),點(diǎn)P是線段AB上的一動(dòng)點(diǎn),以P為圓心,r為半徑畫圓.
(1)若點(diǎn)P的橫坐標(biāo)為﹣3,當(dāng)⊙P與x軸相切時(shí),則半徑r為 ,此時(shí)⊙P與y軸的位置關(guān)系是 .(直接寫結(jié)果)
(2)若,當(dāng)⊙P與坐標(biāo)軸有且只有3個(gè)公共點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).
(3)如圖2,當(dāng)圓心P與A重合,時(shí),設(shè)點(diǎn)C為⊙P上的一個(gè)動(dòng)點(diǎn),連接OC,將線段OC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長(zhǎng)的最值并直接寫出對(duì)應(yīng)的點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)O作OD⊥AC于點(diǎn)D,下列四個(gè)結(jié)論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點(diǎn)O到△ABC各邊的距離相等;
④設(shè)OD=m,AE+AF=n,則S△AEF=mn.
其中正確的結(jié)論是( )
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,且CD=24,點(diǎn)M在⊙O上,MD經(jīng)過圓心O,聯(lián)結(jié)MB.
(1)若BE=8,求⊙O的半徑;
(2)若∠DMB=∠D,求線段OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市中小學(xué)教育大力提倡“2+2”素質(zhì)教育,在開展的幾年來,取得了重大成果.小明對(duì)本學(xué)期全班50名同學(xué)所選擇的活動(dòng)項(xiàng)目進(jìn)行了統(tǒng)計(jì),根據(jù)收集的數(shù)據(jù)制作了下表:
1)請(qǐng)完善表格中的數(shù)據(jù):
2)根據(jù)上述表格中的人數(shù)百分比,繪制合適的統(tǒng)計(jì)圖.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com