【題目】 1 是小紅在“淘寶 11”活動中所購買的一張多檔位可調節(jié)靠椅,檔位調節(jié)示意圖如圖 2 所示。已知兩支腳 AB=ACO AC 上固定連接點,靠背 OD=10 分米。檔位為Ⅰ檔時,ODAB,檔位為Ⅱ擋時,OD’⊥AC,過點OOGBC,則∠DOG+D’OG=_________°當靠椅由Ⅰ檔調節(jié)為Ⅱ檔時,靠背頂端 D 向后靠至 D’,此時點 D 移動的水平距離是 2 分米,即 ED=2 分米。DHOG于點H,則D到直線OG的距離為_________ 分米.

【答案】90 8

【解析】

先利用平行線的性質與等腰三角形的性質證明∠DOG=COG,在利用等量代換計算出∠DOG+D’OG=COD’=90°;先構造RtOMD’,再利用全等的性質以及勾股定理計算DH的長.

1)過點D’MD’OH于點M,記ABOH交于點N

ODAB,OGBC

∴∠DOG=ANO,∠ANO=ABC,∠ACB=COG

∴∠DOG=ABC

AB=AC

∴∠ABC=ACB

∴∠DOG=ABC=ACB=COG

OD’AC

∴∠COD’=90°

∴∠DOG+D’OG=COG+D’OG=COD’=90°

2)∵DHOGD’MOG

∴∠OHD=OMD’=90°

∴在RtOHD中,∠DOG+ODH=90°

又∵∠DOG+D’OG=90°

∴∠ODH=D’OG

∵旋轉

OD=D’O

在△ODH和△D’OM

∴△ODH≌△D’OMAAS

DH=OM

又∵HM=ED’=2

DH=OM=OH+HM=OH+2

不妨設OH=x,則DH=x+2

∴在RtOHD中,OD=10,

由勾股定理可得:

即:

解得:,(舍去)

D到直線OG的距離為DH=x+2=8

故答案為:90,8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正三角形OAB的頂點B的坐標為(2,0),點A在第一象限內,將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時點A′的橫坐標為3,則點B′的坐標為( 。

A. 4,2 B. 33 C. 43 D. 3,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于點A-4,0)和B1,0)兩點,與y軸交于C.

(1)求此拋物線的解析式;

(2)E是線段AB上的動點,作EFACBCF,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;

(3)P為拋物線上A、C兩點間的一個動點,過Py軸的平行線,交ACQ,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了盡快實施脫貧致富奔小康宏偉意圖,某縣扶貧工作隊為朝陽溝村購買了一批蘋果樹苗和梨樹苗,已知一棵蘋果樹苗比一棵梨樹苗貴2元,購買蘋果樹苗的費用和購買梨樹苗的費用分別是3500元和2500元.

(1)若兩種樹苗購買的棵數(shù)一樣多,求梨樹苗的單價;

(2)若兩種樹苗共購買1100棵,且購買兩種樹苗的總費用不超過6000元,根據(jù)(1)中兩種樹苗的單價,求梨樹苗至少購買多少棵.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點,于點,點為直線上不與點重合的一個動點.

(1)求線段的長;

(2)的面積是6時,求點的坐標;

(3)軸上是否存在點,使得以、為頂點的三角形與全等,若存在,請直接寫出所有符合條件的點的坐標,否則,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,點AX軸的正半軸,OA=8 ,B在第一象限,∠AOB=60°,ABOB垂足為B, D、C分別在邊OB、OA上,且OD=AC=t,OD、OC為邊作平行四邊形OCED,DE交直線ABF,CE交直線AB為點G.

(1) t=2時, E的坐標為   

(2) ΔDFC的面積為,求t的值。

(3) D、 B 、G、 E四點為頂點的四邊形為平行四邊形時,在Y軸上存在點M,過點MFC的平行線交直線OB為點N,若以M、 N、 F、 C為頂點的四邊形也是平行四邊形,則點M的坐標為   (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B-1,2)是一次函數(shù)與反比例函數(shù)

)圖象的兩個交點,AC⊥x軸于CBD⊥y軸于D

(1)根據(jù)圖象直接回答:在第二象限內,當x取何值時,一次函數(shù)大于反比例函數(shù)的值?

(2)求一次函數(shù)解析式及m的值;

(3)P是線段AB上的一點,連接PCPD,若△PCA△PDB面積相等,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直線ABCD,點E. F分別是ABCD上的點。

(1)如圖1,當點PABCD內部時,試說明:∠EPF=AEP+CFP;

(2)如圖2,當點PAB上方時,∠EPF、∠AEP、∠CFP之間有怎樣的數(shù)量關系?并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線與x軸的另一個交點為A,頂點為P

1)求該拋物線的解析式;

2)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案