【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)B的坐標(biāo)為(8,4),點(diǎn)C的坐標(biāo)為(3,4),連接AB、BC、OC
(1)求證四邊形OABC是菱形;
(2)直線l過(guò)點(diǎn)C且與y軸平行,將直線l沿x軸正方向平移,平移后的直線交x軸于點(diǎn)P.
①當(dāng)OP:PA=3:2時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)Q在直線1上,在直線l平移過(guò)程中,當(dāng)△COQ是等腰直角三角形時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).
【答案】(1)證明見(jiàn)解析;(2)①點(diǎn)P坐標(biāo)為(3,0)或(15,0);②點(diǎn)Q坐標(biāo)為:(﹣4,3),(7,1),(,)
【解析】
(1)根據(jù)兩點(diǎn)距離公式可求AO=BC=CO=AB=5,即可證四邊形OABC是菱形;
(2)①分點(diǎn)P在線段OA上,在點(diǎn)A右側(cè)兩種情況討論,根據(jù)題意可求OP的長(zhǎng),即可求點(diǎn)P的坐標(biāo);
②分三種情況討論,根據(jù)全等三角形的判定和性質(zhì),可求點(diǎn)Q的坐標(biāo).
證明:(1)∵點(diǎn)A的坐標(biāo)為(5,0),點(diǎn)B的坐標(biāo)為(8,4),點(diǎn)C的坐標(biāo)為(3,4),O點(diǎn)坐標(biāo)(0,0)
∴AO=BC=5,CO==5,AB= =5
∴AO=BC=CO=AB=5
∴四邊形ABCO是菱形
(2)①當(dāng)點(diǎn)P在線段OA上,
∵OP:PA=3:2,OP+AP=5
∴OP=3,PA=2
∴點(diǎn)P坐標(biāo)為(3,0)
當(dāng)點(diǎn)P在點(diǎn)A的右側(cè),
∵OP:PA=3:2,OP﹣AP=OA=5
∴OP=15,AP=10
∴點(diǎn)P坐標(biāo)為(15,0)
②如圖,當(dāng)∠COQ=90°,OC=OQ時(shí),過(guò)點(diǎn)C作CE⊥OA于E,則OE=3,CE=4,
∵∠COE+∠POQ=90°,∠COE+∠OCE=90°,
∴∠OCE=∠POQ,且OC=OQ,∠CEO=∠OPQ
∴△COE≌△QOP(AAS)
∴PQ=OE=3,OP=CE=4,
∴點(diǎn)Q坐標(biāo)(﹣4,3)
如圖,當(dāng)∠OCQ=90°,OC=CQ時(shí),過(guò)點(diǎn)C作CE⊥OA于點(diǎn)E,則CE=4,OE=3,
過(guò)點(diǎn)Q作FQ⊥CE于點(diǎn)F,
∵∠OCE+∠ECQ=90°,∠ECQ+∠CQF=90°,
∴∠OCE=∠CQF,且OC=CQ,∠OEC=∠CFQ=90°,
∴△OEC≌△CFQ(AAS)
∴CF=OE=3,FQ=CE=4,
∴EF=1,
∵QF⊥CE,CE⊥AO,PQ⊥OA
∴四邊形EPQF是矩形
∴EP=FQ=4
即OP=7
∴點(diǎn)Q坐標(biāo)為(7,1)
如圖,若∠CQO=90°,CQ=OQ時(shí),過(guò)點(diǎn)C作CE⊥OA于點(diǎn)E,則CE=4,OE=3,
∵∠CQH+∠OQP=90°,∠PQO+∠QOP=90°,
∴∠CQH=∠QOP,且OQ=CQ,∠CHQ=∠OPQ=90°,
∴△OPQ≌△QHC(AAS)
∴OP=HQ,CH=PQ,
∵CE⊥OA,PH⊥BC,PH⊥OA
∴四邊形CEPH是矩形,
∴EP=CH=PQ,HP=CE=4,
∵HQ+PQ=HP=4=OP+EP,OP﹣EP=OE=3,
∴OP=,EP=PQ=
∴點(diǎn)Q坐標(biāo)()
綜上所述:點(diǎn)Q坐標(biāo)為:(﹣4,3),(7,1),()
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,以點(diǎn)P(2,a)為圓心的⊙P與y軸相切,直線y=x與⊙P相交于點(diǎn)A、B,且AB的長(zhǎng)為2,則a的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),直線y=﹣x﹣1與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為2.
(1)求二次函數(shù)的解析式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E,求線段PE長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,連接DC,DB,設(shè)△BCD的面積為S,求S的最大值;
(3)如圖2,過(guò)點(diǎn)D作DM⊥BC于點(diǎn)M,是否存在點(diǎn)D,使得△CDM中的某個(gè)角恰好等于∠ABC的2倍?若存在,直接寫出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=x2﹣2x+2上運(yùn)動(dòng).過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連結(jié)BD,則對(duì)角線BD的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長(zhǎng)線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過(guò)這三個(gè)點(diǎn)_____(填“能”或“不能”)畫一個(gè)圓,理由是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com