【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,,垂足分別為E,F(xiàn).(1)、求證:△BED≌△CFD;(2)、若∠A=90°,求證:四邊形DFAE是正方形.
【答案】(1)、證明過程見解析;(2)、證明過程見解析.
【解析】
試題分析:(1)、根據(jù)AB=AC可得∠B=∠C,根據(jù)DE⊥AB,DF⊥AC可得∠BED=∠CFD=90°,根據(jù)D為中點可得BD=CD,根據(jù)AAS可以判定三角形全等;(2)、根據(jù)三個角為直角的四邊形是矩形,首先得出矩形,然后根據(jù)(1)的結論說明有一組鄰邊相等.
試題解析:(1)、∵AB=AC ∴∠B=∠C ∵DE⊥AB,DF⊥AC ∴∠BED=∠CFD=90°
∵D為BC的中點 ∴BD=CD ∴△BED≌△CFD
(2)、∵DE⊥AB,DF⊥AC ∴∠AED=∠AFD=90° 又∵∠A=90°
∴四邊形DFAE為矩形 ∵△BED≌△CFD ∴DE=DF ∴四邊形DFAE為正方形.
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知:一次函數(shù)y=kx+b的圖象經(jīng)過M(0,2),(1,3)兩點.求該圖象與x軸交點的坐標。
(2)已知點是第一象限內(nèi)的點,且,點A的坐標為(10,0) .設△OAP的面積為.
①求與 的函數(shù)關系式,并寫出自變量的取值范圍;
②畫出的圖像.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,邊AB、AC的垂直平分線分別交BC于D、E.
(1)若BC=10,則△ADE周長是多少?為什么?
(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式從左到右的變形屬于因式分解的是( )
A. (m-2)(m-3)=(3-m)(2-m) B. a2-2a+3=(a-1)2+2
C. (x+1)(x-1)=x2-1 D. 1-a2=(1+a)(1-a)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限C,D兩點,坐標軸交于A、B兩點,連結OC,OD(O是坐標原點).
(1)利用圖中條件,求反比例函數(shù)的解析式和m的值;
(2)求△DOC的面積.
(3)雙曲線上是否存在一點P,使得△POC和△POD的面積相等?若存在,給出證明并求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)的圖像與反比例函數(shù)的圖像交于M(2,m)、N(-1-4) 兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像寫出使反比例函數(shù)值大于一次函數(shù)值的x取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式,并回答問題
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
……
(1)請你寫出第 5個式子;__________________________;
(2)請你用含 n 的式子表示上述式子所表述的規(guī)律;__________________________;
(3)計算1+3+5+7+9…+ 101;
(4)計算: 51+53++99+101
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com