【題目】如圖,是由若干個棱長為1cm的完全相同的小正方體組成的一個幾何體.
(1)請畫出這個幾何體的三視圖;
(2)在露出的表面上涂上顏色(不含底面),則涂上顏色部分的總面積為 cm2.
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的三視圖不變,那么最多可以再添加______個小正方體.
【答案】(1)見解析(2)31(3)2
【解析】
(1)由已知條件可知,主視圖有3列,每列小正方數(shù)形數(shù)目分別為3,2,2;左視圖有2列,每列小正方形數(shù)目分別為3,2;俯視圖有3列,每列小正方數(shù)形數(shù)目分別為2,1,2.據(jù)此可畫出圖形;
(2)利用幾何體的形狀進而求出其表面積;
(3)保持俯視圖和左視圖不變,可往第一列前面的幾何體上放一個小正方體,第3列后面可以放一個小正方體進而得出答案.
解:(1)如圖所示:
(2)該幾何體的表面積是:7×2+5×2+5+2=31(cm2);
故答案為:31;
(3)最多可以再添加2個小正方體.
故答案為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖①.當(dāng)∠COD在∠AOB的內(nèi)部時
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖②,當(dāng)∠COD在∠AOB的外部時,
①請直接寫出∠AOC與∠DOE的度數(shù)之間的關(guān)系;
②在∠AOC內(nèi)部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出∠AOF與∠DOE的度數(shù)之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為.
(1)若是“相伴數(shù)對”,求的值;
(2)寫出一個“相伴數(shù)對” ,其中且;
(3)若是“相伴數(shù)對”,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標;若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN , 求出 的值,并求出此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為24的正方形ABCD中,有一個小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF= ,則小正方形的周長為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF//BC交AC于M,若CM=5,則CE2+CF2等于( )
A. 100 B. 75 C. 120 D. 125
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,從節(jié)省資金的角度考慮,應(yīng)該選擇哪個工程隊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長4m的樓梯AB的傾斜角∠ABD為60°,為了改善樓梯的安全性能,準備重新建造樓梯,使其傾斜角∠ACD為45°,則調(diào)整后的樓梯AC的長為( 。
A.2 m
B.2 m
C.(2 ﹣2)m
D.(2 ﹣2)m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com