【題目】問題背景:在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖1:將矩形紙片ABCD沿對(duì)角線AC剪開,得到△ABC和△ACD.并且量AB=4cm,AC=8cm,問題解決:
(1)將圖1中的△ACD以點(diǎn)為A旋轉(zhuǎn)中心,按逆時(shí)針方向能轉(zhuǎn)∠α,使∠α=∠BAC,得到如圖2所示的△AC'D,過點(diǎn)C作AC'的平行線,與DC'的延長(zhǎng)線交于點(diǎn)E,則四邊形ACEC'的形狀是 .
(2)縝密小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使B、A、D三點(diǎn)在同一條直線上,得到如圖3所示的△AC'D,連接CC',取CC'的中點(diǎn)F,連接AF并延長(zhǎng)到點(diǎn)G,使FG=AF,連接CG、C'G,得到四邊形ACGC',發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:(3)創(chuàng)新小組在縝密小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A'點(diǎn),A'C與BC'相交于點(diǎn)H,如圖4所示,連接CC',試求tan∠C'CH的值.
【答案】(1)菱形;(2)詳見解析;(3)
【解析】
(1)先判斷出∠ACD=∠BAC,進(jìn)而判斷出∠BAC=∠AC'D,進(jìn)而判斷出∠CAC'=∠AC'D,即可得結(jié)論;
(2)先判斷出∠CAC'=90°,再判斷出AG⊥CC',CF=C'F,進(jìn)而判斷出四邊形ACGC'是菱形,即可得出結(jié)論;
(3)先判斷出∠ACB=30°,進(jìn)而求出BH,AH,即可求出CH,C'H,即可得出結(jié)論.
(1)在如圖1中,
∵AC是矩形ABCD的對(duì)角線,
∴∠B=∠D=90°,AB∥CD,
∴∠ACD=∠BAC,
在圖2中,由旋轉(zhuǎn)知,AC'=AC,∠AC'D=∠ACD,
∴∠BAC=∠AC'D,
∵∠CAC'=∠BAC,
∴∠CAC'=∠AC'D,
∴AC∥C'E,
∵AC'∥CE,
∴四邊形ACEC'是平行四邊形,
∵AC=AC',
∴ACEC'是菱形,
故答案為:菱形;
(2)在圖1中,∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠CAD=∠ACB,∠B=90°,
∴∠BAC+∠ACB=90°
在圖3中,由旋轉(zhuǎn)知,∠DAC'=∠DAC,
∴∠ACB=∠DAC',
∴∠BAC+∠DAC'=90°,
∵點(diǎn)D,A,B在同一條直線上,
∴∠CAC'=90°,
由旋轉(zhuǎn)知,AC=AC',
∵點(diǎn)F是CC'的中點(diǎn),
∴AG⊥CC',CF=C'F,
∵AF=FG,
∴四邊形ACGC'是平行四邊形,
∵AG⊥CC',
∴ACGC'是菱形,
∵∠CAC'=90°,
∴菱形ACGC'是正方形;
(3)在Rt△ABC中,AB=4,AC=8,
∴AC'=AC=8,AD=BC=4,sin∠ACB=,
∴∠ACB=30°,
由(2)結(jié)合平移知,∠CHC'=90°,
在Rt△BCH中,∠ACB=30°,
∴BH=BCsin30°=2,
∴C'H=BC'﹣BH=8﹣2,
在Rt△ABH中,AH=AB=2,
∴CH=AC﹣AH=8﹣2=6,
在Rt△CHC'中,tan∠C′CH=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠EFG的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的一條邊AD=8 cm,點(diǎn)P在CD邊上,AP=AB, PC=4cm,連結(jié)PB.點(diǎn)M從點(diǎn)P出發(fā),沿PA方向勻速運(yùn)動(dòng)(點(diǎn)M與點(diǎn)P、A不重合);點(diǎn)N同時(shí)從點(diǎn)B出發(fā),沿線段AB的延長(zhǎng)線勻速運(yùn)動(dòng),連結(jié)MN交PB于點(diǎn)F.
(1)求AB的長(zhǎng);
(2)若點(diǎn)M的運(yùn)動(dòng)速度為1cm/s,點(diǎn)N的運(yùn)動(dòng)速度為2cm/s,△AMN的面積為S,點(diǎn)M和點(diǎn)N的運(yùn)動(dòng)時(shí)間為,求S與的函數(shù)關(guān)系式,并求S的最大值;
(3)若點(diǎn)M和點(diǎn)N的運(yùn)動(dòng)速度相等,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在運(yùn)動(dòng)過程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:
如圖1,在△ABC中,點(diǎn)O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長(zhǎng).
經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)B作BD∥AC,交AO的延長(zhǎng)線于點(diǎn)D,通過構(gòu)造△ABD就可以解決問題(如圖2).
請(qǐng)回答:∠ADB= °,AB= .
(2)請(qǐng)參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線過B(﹣2,6),C(2,2)兩點(diǎn).
(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班開展了“讀一本好書”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類別,每位同學(xué)僅選一項(xiàng).根據(jù)調(diào)査結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | a | 0.5 |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | b | 1 |
根據(jù)圖表提供的信息,回答下列問題:
(1)直接寫出:a= .b= m= ;
(2)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請(qǐng)求選取的2人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中的一個(gè)內(nèi)角α是另一個(gè)內(nèi)角β的一半時(shí),我們稱此三角形為“特征三角形”,其中α稱為“特征角”.如果一個(gè)“特征三角形”的“特征角”為直角三角形,則這個(gè)“特征角”的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了擴(kuò)大內(nèi)需,讓惠于農(nóng)民,豐富農(nóng)民的業(yè)余生活,鼓勵(lì)送彩電下鄉(xiāng),國(guó)家決定對(duì)購(gòu)買彩電的農(nóng)戶實(shí)行政府補(bǔ)貼.規(guī)定每購(gòu)買一臺(tái)彩電,政府補(bǔ)貼若干元,經(jīng)調(diào)查某商場(chǎng)銷售彩電臺(tái)數(shù)y(臺(tái))與補(bǔ)貼款額(元)之間大致滿足如圖①所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼款額的不斷增大,銷售量也不斷增加,但每臺(tái)彩電的收益(元)會(huì)相應(yīng)降低且與之間也大致滿足如圖②所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該商場(chǎng)銷售彩電的總收益額為多少元?
(2)在政府補(bǔ)貼政策實(shí)施后,分別求出該商場(chǎng)銷售彩電臺(tái)數(shù)和每臺(tái)家電的收益與政府補(bǔ)貼款額之間的函數(shù)關(guān)系式;
(3)要使該商場(chǎng)銷售彩電的總收益(元)最大,政府應(yīng)將每臺(tái)補(bǔ)貼款額定為多少?并求出總收益的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中C類女生有 名,D類男生有 名;將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)計(jì)算扇形統(tǒng)計(jì)圖中D所占的圓心角是 ;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com