已知拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C(0,3),過(guò)點(diǎn)C作x軸的平行線與拋物線交于點(diǎn)D,拋物線的頂點(diǎn)為M,直線y=x+5經(jīng)過(guò)D、M兩點(diǎn).
(1)求此拋物線的解析式;
(2)連接AM、AC、BC,試比較∠MAB和∠ACB的大小,并說(shuō)明你的理由.
(1)∵CDx軸且點(diǎn)C(0,3),
∴設(shè)點(diǎn)D的坐標(biāo)為(x,3),
∵直線y=x+5經(jīng)過(guò)D點(diǎn),
∴3=x+5,
∴x=-2,
即點(diǎn)D(-2,3),
根據(jù)拋物線的對(duì)稱(chēng)性,設(shè)頂點(diǎn)的坐標(biāo)為M(-1,y),
又∵直線y=x+5經(jīng)過(guò)M點(diǎn),
∴y=-1+5,y=4、即M(-1,4),
∴設(shè)拋物線的解析式為y=a(x+1)2+4,
∵點(diǎn)C(0,3)在拋物線上,
∴a=-1,
即拋物線的解析式為y=-x2-2x+3.(3分)


(2)作BP⊥AC于點(diǎn)P,MN⊥AB于點(diǎn)N;
由(1)中拋物線y=-x2-2x+3可得:
點(diǎn)A(-3,0),B(1,0),
∴AB=4,AO=CO=3,AC=3
2
,
∴∠PAB=45°;
∵∠ABP=45°,
∴PA=PB=2
2

∴PC=AC-PA=
2
;
在Rt△BPC中,tan∠BCP=
PB
PC
=2,
在Rt△ANM中,∵M(jìn)(-1,4),
∴MN=4
、∴AN=2,
tan∠NAM=
MN
AN
=2,
∴∠BCP=∠NAM,
即∠ACB=∠MAB.(8分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,
3
),點(diǎn)B的坐標(biāo)(-2,0),點(diǎn)O為原點(diǎn).
(1)求過(guò)點(diǎn)A,O,B的拋物線解析式;
(2)在x軸上找一點(diǎn)C,使△ABC為直角三角形,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)C的坐標(biāo);
(3)將原點(diǎn)O繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°后得點(diǎn)O′,判斷點(diǎn)O′是否在拋物線上,請(qǐng)說(shuō)明理由;
(4)在x軸下方的拋物線上是否存在一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交直線AB于點(diǎn)E,線段OE把△AOB分成兩個(gè)三角形,使其中一個(gè)三角形面積與四邊形BPOE面積比為2:3,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2口口少•荊門(mén))9開(kāi)4向上4拋物線與x軸交于g(m-2,口),B(m+2,口)兩點(diǎn),記拋物線頂點(diǎn)為C,且gC⊥BC.
(你)若m為常數(shù),求拋物線4解析式;
(2)若m為小于口4常數(shù),那么(你)中4拋物線經(jīng)過(guò)怎么樣4平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(右)設(shè)拋物線交三軸正半軸于下點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得△BO下為等腰三角形?若存在,求出m4值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=4x-
1
2
x2
刻畫(huà),斜坡可以用一次函數(shù)y=
1
2
x
刻畫(huà).
(1)求小球到達(dá)的最高點(diǎn)的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對(duì)稱(chēng)軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
(3)點(diǎn)E為直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問(wèn)是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在第一象限內(nèi),以
5
為半徑的圓⊙M經(jīng)過(guò)點(diǎn)A(-1,0),B(3,0),與y軸相交于點(diǎn)C.
(1)在所給的坐標(biāo)系中作出⊙M,并求M點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(3)若D為⊙M上的最低點(diǎn),E為x軸上的任一點(diǎn),則在拋物線上是否存在這樣的點(diǎn)F,使得以點(diǎn)A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,對(duì)稱(chēng)軸為x=3的拋物線y=ax2+2x與x軸相交于點(diǎn)B,O.
(1)求拋物線的解析式,并求出頂點(diǎn)A的坐標(biāo);
(2)連接AB,把AB所在的直線平移,使它經(jīng)過(guò)原點(diǎn)O,得到直線l.點(diǎn)P是l上一動(dòng)點(diǎn).設(shè)以點(diǎn)A、B、O、P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為t,當(dāng)0<S≤18時(shí),求t的取值范圍;
(3)在(2)的條件下,當(dāng)t取最大值時(shí),拋物線上是否存在點(diǎn)Q,使△OPQ為直角三角形且OP為直角邊?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-
2
3
x2+bx+c經(jīng)過(guò)A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對(duì)角線的菱形;
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對(duì)角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是邊長(zhǎng)為60cm的正方形硬紙片,剪掉陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)底面是正方形的長(zhǎng)方體包裝盒.
(1)若折疊后長(zhǎng)方體底面正方形的面積為1250cm2,求長(zhǎng)方體包裝盒的高;
(2)設(shè)剪掉的等腰直角三角形的直角邊長(zhǎng)為x(cm),長(zhǎng)方體的側(cè)面積為S(cm2),求S與x的函數(shù)關(guān)系式,并求x為何值時(shí),S的值最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案