【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
(1)寫出表格中a,b,c的值:a= ,b= ,c= .
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的方差 .(填“變大”“變小”“不變”)
(3)教練根據(jù)這10次成績(jī)?nèi)暨x擇甲參加比賽,教練的理由是什么?
【答案】(1)a=7,b=7.5,c=4.2;(2)變;(3)因?yàn)樗麄兊钠骄鶖?shù)相同,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽
【解析】
(1)利用平均數(shù)的計(jì)算公式直接計(jì)算平均分即可;將乙的成績(jī)從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計(jì)算即可;
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的平均數(shù)不變,求得方差即可得出結(jié)論;
(3)他們的平均數(shù)相同,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽.
解:(1)甲的平均成績(jī)a==7(環(huán)),
甲的成績(jī)的眾數(shù)c=7(環(huán)),
∵乙射擊的成績(jī)從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,
∴乙射擊成績(jī)的中位數(shù)b==7.5(環(huán)),
其方差d=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]
=×(16+9+1+3+4+9)
=4.2;
故答案為:7,7.5,4.2;
(2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績(jī)的平均數(shù)不變,方差為:
×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2+(7﹣7)2]
=×(16+9+1+3+4+9)
=<4.2;
∴乙的射擊成績(jī)的方差變小,
故答案為:變。
(3)因?yàn)樗麄兊钠骄鶖?shù)相同,而甲的方差小,發(fā)揮比較穩(wěn)定,所以選擇甲參加射擊比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤(rùn)最大,最大利潤(rùn)多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤(rùn),每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線與反比例函數(shù)的圖像交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B是x軸正半軸上一點(diǎn),且⊥.
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)先在的內(nèi)部求作點(diǎn)P,使點(diǎn)P到的兩邊OA、OB的距離相等,且PA=PB.(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)P)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車,相約在山頂纜車的終點(diǎn)會(huì)合.已知爸爸步行的路程是纜車所經(jīng)線路長(zhǎng)的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180米.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.
(1)爸爸行走的總路程是 米,他途中休息了 分鐘;
(2)當(dāng)時(shí),與之間的函數(shù)關(guān)系式是 ;
(3)爸爸休息之后行走的速度是每分鐘 米;
(4)當(dāng)媽媽到達(dá)纜車終點(diǎn)是,爸爸離纜車終點(diǎn)的路程是 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下,中學(xué)生完成數(shù)學(xué)家庭作業(yè)時(shí),注意力指數(shù)隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).
(1)分別求出線段AB和雙曲線CD的函數(shù)關(guān)系式;
(2)若學(xué)生的注意力指數(shù)不低于40為高效時(shí)間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學(xué)家庭作業(yè)的高效時(shí)間是多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),
(1)求這兩個(gè)函數(shù)表達(dá)式
(2)寫出使反比例函數(shù)值大于一次函數(shù)值時(shí)的取值范圍。
(3)△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)是邊上的點(diǎn),平分,平分,有下列結(jié)論:①,②為的中點(diǎn),③,④,其中正確的有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐四邊形旋轉(zhuǎn)中的數(shù)學(xué)
“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動(dòng)中研究了一個(gè)問題,請(qǐng)幫他們解答.
任務(wù)一:如圖1,在矩形ABCD中,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為矩形,連接CG.
請(qǐng)直接寫出CG的長(zhǎng)是______.
如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn)至點(diǎn)G落在邊AB上時(shí),請(qǐng)計(jì)算DF與CG的長(zhǎng),通過計(jì)算,試猜想DF與CG之間的數(shù)量關(guān)系.
當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時(shí),中DF與CG之間的數(shù)量關(guān)系是否還成立?請(qǐng)說明理由.
任務(wù)二:“智慧”數(shù)學(xué)小組對(duì)圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著特定的數(shù)量關(guān)系.
如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時(shí)針旋轉(zhuǎn),其他條件不變時(shí),“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著這一特定的數(shù)量關(guān)系請(qǐng)你直接寫出這個(gè)特定的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:.在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”.例如:像,,…這樣的分式是假分式;像 ,,…這樣的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式. 例如: ’
.
(1)將分式化為整式與真分式的和的形式;
(2)如果分式的值為整數(shù),求x的整數(shù)值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com