分析 由△ABC是等邊三角形,CD是∠ACB的平分線,利用三線合一的性質(zhì),可得AD=BD,又由DE∥BC,可得DE是△ABC的中位線,即可求得DE的長,易證得△DCE是等腰三角形,則可求得答案.
解答 解:∵△ABC是等邊三角形,CD是∠ACB的平分線,
∴AD=BD,∠ACD=∠BCD,
∵DE∥BC,
∴DE=$\frac{1}{2}$BC=$\frac{1}{2}$×4=2,∠EDC=∠BCD,
∴∠EDC=∠ACD,
∴EC=DE=$\frac{1}{2}$×4=2.
故答案為2.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)以及三角形中位線的性質(zhì).注意由角平分線與平行線,可構(gòu)造等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$-2 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (1) | B. | (2) | C. | (3) | D. | (4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com