【題目】拋物線y=﹣x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.
【答案】(1)y=﹣x2+2x+3;(2)當a=時,△BDC的面積最大,此時P(, );(3)m的變化范圍為:﹣≤m≤5
【解析】試題分析:
解:
(1)由題意得:,解得: ,
∴拋物線解析式為;
(2)令,
∴x1= -1,x2=3,即B(3,0),
設直線BC的解析式為y=kx+b′,
∴,解得: ,
∴直線BC的解析式為,
設P(a,3-a),則D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB
,
∴當時,△BDC的面積最大,此時P(, );
(3)由(1),y=-x2+2x+3=-(x-1)2+4,
∴OF=1,EF=4,OC=3,
過C作CH⊥EF于H點,則CH=EH=1,
當M在EF左側時,
∵∠MNC=90°,
則△MNF∽△NCH,
∴,
設FN=n,則NH=3-n,
∴,
即n2-3n-m+1=0,
關于n的方程有解,△=(-3)2-4(-m+1)≥0,
得m≥,
當M在EF右側時,Rt△CHE中,CH=EH=1,∠CEH=45°,即∠CEF=45°,
作EM⊥CE交x軸于點M,則∠FEM=45°,
∵FM=EF=4,
∴OM=5,
即N為點E時,OM=5,
∴m≤5,
綜上,m的變化范圍為: ≤m≤5.
科目:初中數學 來源: 題型:
【題目】(2013年浙江義烏3分)如圖,拋物線y=ax2+bx+c與x軸交于點A(1,0),頂點坐標為(1,n),與y軸的交點在(0,2)、(0,3)之間(包含端點),則下列結論:
①當x>3時,y<0;②3a+b>0;③;④3≤n≤4中,
正確的是( )
A. ①② B. ③④ C. ①④ D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.學校采取隨機抽樣的方法進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門).對調查結果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給信息解答下列問題:
(1)本次調查的學生共有 人,在扇形統(tǒng)計圖中,m的值是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)在被調查的學生中,選修書法的有2名女同學,其余為男同學,現要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某甜品店用 A,B 兩種原料制作成甲、乙兩款甜品進行銷售,制作每份甜品的原料所需用量如下表所示.該店制作甲款甜品 x 份,乙款甜品 y 份,共用去A 原料 2000 克.
原料 款式 | A 原料(克) | B 原料(克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求 y 關于 x 的函數表達式.
(2)已知每份甲甜品的利潤為 a 元(a 正整數), 每份乙甜品的利潤為 2 元. 假設兩款甜品均能全部賣出.
①當 a=3 時,若獲得總利潤不少于 220 元,則至少要用去 B 原料多少克?
②現有 B 原料 3100 克,要使獲利為 450 元且盡量不浪費原材料,甲甜品的每份利潤應定為多元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點E為AD中點,點P為線段AB上一個動點,連接EP,將△APE沿PE折疊得到△FPE,連接CE,CF,當△ECF為直角三角形時,AP的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1,作正方形A1B1C1B2,延長C1B2交直線l于點A2,作正方形A2B2C2B3,延長C2B3交直線l于點A3,作正方形A3B3C3B4,…,依此規(guī)律,則A2016A2017=__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點D,使AD=4,將線段AD繞點A按順時針方向旋轉,點D的對應點是點P,連接BP,取BP的中點F,連接CF,當點P旋轉至CA的延長線上時,CF的長是_____,在旋轉過程中,CF的最大長度是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com