【題目】(2016山東濰坊第25題)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
【答案】(1)y=x2+2x+1;(2)P(﹣,﹣);(3)(﹣4,1)或(3,1).
【解析】
試題分析:(1)用待定系數(shù)法求出拋物線解析式即可;(2)設(shè)點P(m, m2+2m+1),表示出PE=﹣m2﹣3m,再用S四邊形AECP=S△AEC+S△APC=AC×PE,建立函數(shù)關(guān)系式,求出極值即可;(3)先判斷出PF=CF,再得到∠PCF=∠EAF,以C、P、Q為頂點的三角形與△ABC相似,分兩種情況計算即可.
試題解析:(1)∵點A(0,1).B(﹣9,10)在拋物線上,
∴,
∴b=2,c=1,
∴拋物線的解析式為y=x2+2x+1,
(2)∵AC∥x軸,A(0,1)
∴x2+2x+1=1,
∴x1=6,x2=0,
∴點C的坐標(﹣6,1),
∵點A(0,1).B(﹣9,10),
∴直線AB的解析式為y=﹣x+1,
設(shè)點P(m, m2+2m+1)
∴E(m,﹣m+1)
∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,
∵AC⊥EP,AC=6,
∴S四邊形AECP
=S△AEC+S△APC
=AC×EF+AC×PF
=AC×(EF+PF)
=AC×PE
=×6×(﹣m2﹣3m)
=﹣m2﹣9m
=﹣(m+)2+,
∵﹣6<m<0
∴當m=﹣時,四邊形AECP的面積的最大值是,
此時點P(﹣,﹣).
(3)∵y=x2+2x+1=(x+3)2﹣2,
∴P(﹣3,﹣2),
∴PF=yF﹣yP=3,CF=xF﹣xC=3,
∴PF=CF,
∴∠PCF=45°
同理可得:∠EAF=45°,
∴∠PCF=∠EAF,
∴在直線AC上存在滿足條件的Q,
設(shè)Q(t,1)且AB=9,AC=6,CP=3
∵以C、P、Q為頂點的三角形與△ABC相似,
①當△CPQ∽△ABC時,
∴,
∴,
∴t=﹣4,
∴Q(﹣4,1)
②當△CQP∽△ABC時,
∴,
∴,
∴t=3,
∴Q(3,1).
科目:初中數(shù)學 來源: 題型:
【題目】在 ABCD 中,AD=4 cm,AB=5 cm,則 ABCD 的周長等于( )
A.18 cmB.20 cmC.9 cmD.16 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P為拋物線上,且位于x軸下方.
(1)如圖1,若P(1,-3)、B(4,0),
① 求該拋物線的解析式;
② 若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2) 如圖2,已知直線PA、PB與y軸分別交于E、F兩點.當點P運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】巴黎與北京的時間差為﹣7時(正數(shù)表示同一時刻比北京時間早的時數(shù)),如果北京時間是7月2日14:00,那么巴黎時間是( )
A. 7月2日21時 B. 7月2日7時 C. 7月1日7時 D. 7月2日5時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年揚州鑒真國際半程馬拉松近有4.6萬人參跑,請把4.6萬用科學記數(shù)法表示( )
A. 0.46×103B. 4.6×103C. 0.46×104D. 4.6×104
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com