【題目】如圖甲,在正方形ABCD中,AB=6cm,點(diǎn)P、Q從A點(diǎn)沿邊AB、BC、CD運(yùn)動(dòng),點(diǎn)M從A點(diǎn)沿邊AD、DC、CB運(yùn)動(dòng),點(diǎn)P、Q的速度分別為1cm/s,3cm/s,點(diǎn)M的速度2cm/s.若它們同時(shí)出發(fā),當(dāng)點(diǎn)M與點(diǎn)Q相遇時(shí),所有點(diǎn)都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為ts,△PQM的面積為Scm2,則S關(guān)于t的函數(shù)圖象如圖乙所示.結(jié)合圖形,完成以下各題:
(1)填空:a= ;b= ;c= .
(2)當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)Q相遇?
(3)當(dāng)2<t≤3時(shí),求S與t的函數(shù)關(guān)系式;
(4)在整個(gè)運(yùn)動(dòng)過(guò)程中,△PQM能否為直角三角形?若能,請(qǐng)求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由.
【答案】解:⑴ 根據(jù)題意可列方程為,則
答:當(dāng)時(shí),點(diǎn)M與點(diǎn)Q相遇。---------------------------------3分
⑵ 8;13.5;12(每空1分)
(3)當(dāng)時(shí),
S與t的函數(shù)關(guān)系式是
=-----------------------------------------------------------------------------------9分
(4) 當(dāng)0<t≤2時(shí),不能成為直角三角形;
當(dāng)時(shí),若能成為直角三角形,則有△BPQ∽△CMP,即
,可求出;
當(dāng)3<t≤4時(shí),若能成為直角三角形,則有△BPQ∽△AQM,即
,無(wú)解;
當(dāng)4<t<4.8時(shí),
,----------------------------------------------------------------12分
【解析】
(1)根據(jù)題意列出方程2t+3t=4×6求解即可;
(2)分別令時(shí)間t為2、3、4求得相應(yīng)的三角形的面積即為a、b、cd的值;
(3)當(dāng)2<t≤3時(shí)即點(diǎn)P、Q在線段AB上運(yùn)動(dòng)時(shí),表示出該三角形的面積即可;
(4)分0<t≤2、2<t≤3、2<t≤3、4<t<4.8四種情況討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為Rt△ABC斜邊中點(diǎn),AB=10,BC=6,M,N在AC邊上,∠MON=∠B,若△OMN與△OBC相似,則CM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠CAB的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線分別交AC,AB的延長(zhǎng)線于點(diǎn)E,F.
(1)求證:EF是⊙O的切線;
(2)設(shè)AC=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);
(3)若BF=2,,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校260名學(xué)生參加植樹(shù)活動(dòng),活動(dòng)結(jié)束后學(xué)校隨機(jī)調(diào)查了部分學(xué)生每人的植樹(shù)棵數(shù),并繪制成如下的統(tǒng)計(jì)圖①和統(tǒng)計(jì)圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)本次接受調(diào)查的學(xué)生人數(shù)為______,圖①中m的值為_______;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅲ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù),并根據(jù)樣本數(shù)據(jù),估計(jì)這260名學(xué)生共植樹(shù)多少棵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月份,我市某中學(xué)開(kāi)展?fàn)幾觥拔搴眯」瘛闭魑谋荣惢顒?dòng),賽后隨機(jī)抽取了部分參賽學(xué)生的成績(jī),按得分劃分為A,B,C,D四個(gè)等級(jí),并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:
等級(jí) | 成績(jī)(s) | 頻數(shù)(人數(shù)) |
A | 90<s≤100 | 4 |
B | 80<s≤90 | x |
C | 70<s≤80 | 16 |
D | s≤70 | 6 |
根據(jù)以上信息,解答以下問(wèn)題:
(1)表中的x= ;
(2)扇形統(tǒng)計(jì)圖中m= ,n= ,C等級(jí)對(duì)應(yīng)的扇形的圓心角為 度;
(3)該校準(zhǔn)備從上述獲得A等級(jí)的四名學(xué)生中選取兩人做為學(xué)!拔搴眯」瘛敝驹刚撸阎@四人中有兩名男生(用a1,a2表示)和兩名女生(用b1,b2表示),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求恰好選取的是a1和b1的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(-1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將腰長(zhǎng)為4的等腰直角三角形放在直角坐標(biāo)系中,順次連接各邊中點(diǎn)得到第1個(gè)三角形,再順次連接各邊中點(diǎn)得到第2個(gè)三角形……,如此操作下去,那么,第6個(gè)三角形的直角頂點(diǎn)坐標(biāo)為( )
A. (﹣,) B. (﹣,) C. (﹣,) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有三個(gè)小球,上面分別標(biāo)有數(shù)字3、4、5,這些小球除數(shù)字不同外其余均相同.
(1)從口袋中隨機(jī)摸出一個(gè)小球,小球上的數(shù)字是偶數(shù)的概率是______.
(2)從口袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字后放回,再隨機(jī)摸出一個(gè)小球,記下數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖(或列表)的方法,求兩次摸出的小球上的數(shù)字都是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使△ADC與△BDA相似,可以添加一個(gè)條件.下列添加的條件中錯(cuò)誤的是( )
A. ∠ACD=∠DAB B. AD=DE C. AD·AB=CD·BD D. AD2=BD·CD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com