如圖,點A、B、C表示某旅游景區(qū)三個纜車站的位置,線段AB、BC表示連接纜車站的鋼纜,已知A、B、C三點在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米、310米、710米,鋼纜AB的坡度i1=1:2,鋼纜BC的坡度i2=1:1,景區(qū)因改造纜車線路,需要從A到C直線架設一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
考點:解直角三角形的應用-坡度坡角問題
專題:幾何圖形問題
分析:過點A作AE⊥CC′于點E,交BB′于點F,過點B作BD⊥CC′于點D,分別求出AE、CE,利用勾股定理求解AC即可.
解答:解:過點A作AE⊥CC′于點E,交BB′于點F,過點B作BD⊥CC′于點D,
則△AFB、△BDC、△AEC都是直角三角形,四邊形AA′B′F,BB′C′D和BFED都是矩形,
∴BF=BB′-B′F=BB′-AA′=310-110=200,
CD=CC′-C′D=CC′-BB′=710-310=400,
∵i1=1:2,i2=1:1,
∴AF=2BF=400,BD=CD=400,
又∵EF=BD=400,DE=BF=200,
∴AE=AF+EF=800,CE=CD+DE=600,
∴在Rt△AEC中,AC=
AE2+CE2
=
8002+6002
=1000(米).
答:鋼纜AC的長度是1000米.
點評:本題考查了解直角三角形的應用,解答本題的關鍵是理解坡度坡角的定義,及勾股定理的表達式,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若m2-2m-1=0,則代數(shù)式2m2-4m+3的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

截止2013年10月余額寶規(guī)模達到2 175000 000元,用科學記數(shù)法表示捐款數(shù)應為(  )
A、2.175×1010
B、2.175×109
C、21.75×108
D、217.5×107

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀以下材料,并按要求完成相應的任務.
幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形--箏形.所謂箏形,它的形狀與我們生活中風箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對角線垂直平分另一條對角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都涂上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

廣安某水果店計劃購進甲、乙兩種新出產(chǎn)的水果共140千克,這兩種水果的進價、售價如表所示:
 進價(元/千克)售價(元/千克)
甲種58
乙種913
(1)若該水果店預計進貨款為1000元,則這兩種水果各購進多少千克?
(2)若該水果店決定乙種水果的進貨量不超過甲種水果的進貨量的3倍,應怎樣安排進貨才能使水果店在銷售完這批水果時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,且∠BAC=32°.
(1)求∠P的度數(shù);
(2)若PA=6,求BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某產(chǎn)品生產(chǎn)車間有工人10名.已知每名工人每天可生產(chǎn)甲種產(chǎn)品12個或乙種產(chǎn)品10個,且每生產(chǎn)一個甲種產(chǎn)品可獲利潤100元,每生產(chǎn)一個乙種產(chǎn)品可獲利潤180元.在這10名工人中,如果要使此車間每天所獲利潤不低于15600元,你認為至少要派多少名工人去生產(chǎn)乙種產(chǎn)品才合適.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都為1,請在所給網(wǎng)格中按下列要求畫出圖形.一條線段AB的兩端點落在格點(即小正方形的頂點)上,且長度為2
2
;
(1)在圖①中畫以AB為邊的一個等腰△ABC,使點C在格點中,且另兩邊的長都是無理數(shù);
(2)在圖②中畫以AB為邊的一個凸多邊形,使它們都是中心對稱圖形且不全等,其頂點都在格點上,各邊長都是無理數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果收入50元,記作+50元,那么支出30元記作
 
元.

查看答案和解析>>

同步練習冊答案