【題目】已知關于x的一元二次方程mx2﹣2x+2﹣m=0.
(1)證明:不論m為何值時,方程總有實數(shù)根;
(2)當m為何整數(shù)時,方程有兩個不相等的整數(shù)根.
【答案】(1)見解析;(2)m的值為﹣1和﹣2,2.
【解析】
(1)求出判別式的值為4(m-1)2≥0,據(jù)此可得答案;(2)先根據(jù)求根公式用m表示出x1、x2的值,再根據(jù)x1、x2均為整數(shù)即可得出m的值
(1)∵△=(﹣2)2﹣4m×(2﹣m)
=4﹣8m+4m2
=4(m2﹣2m+1)
=4(m﹣1)2≥0,
∴不論m為何值時,方程總有實數(shù)根;
(2)∵(x﹣1)(mx﹣2+m)=0,
∴x1==1﹣,x2=1.
要使x1,x2均為整數(shù),必為整數(shù).
∴當m取±1、±2時,x1,x2均為整數(shù).
當m=1時,△=4(m﹣1)2=0,此時方程有兩個相等的實數(shù)根,不符合題意,舍去;
∴m的值為﹣1和﹣2,2.
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件;如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設每件商品的售價為x元,每個月的銷售量為y件.
(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍;
(2)設每月的銷售利潤為W,請直接寫出W與x的函數(shù)關系式;
(3)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】西寧教育局在局屬各初中學校設立“自主學習日”.規(guī)定每周三學校不得以任何形式布置家庭作業(yè),為了解各學校的落實情況,從七、八年級學生中隨機抽取了部分學生的反饋表.針對以下六個項目(每人只能選一項):.課外閱讀;.家務勞動;.體育鍛煉;.學科學習;.社會實踐;.其他項目進行調查.根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽查的樣本容量為____________,請補全條形統(tǒng)計圖;
(2)全市約有4萬名在校初中學生,試估計全市學生中選擇體育鍛煉的人數(shù)約有多少人?
(3)七年級(1)班從選擇社會實踐的2名女生和1名男生中選派2名參加校級社會實踐活動.請你用樹狀圖或列表法求出恰好選到1男1女的概率是多少?并列舉出所有等可能的結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為1,G為CD邊上的一個動點(點G與C、D不重合),以CG為一邊向正方形ABCD外作正方形GCEF,連接DE交BG的延長線于點H.
(1)求證:①△BCG≌△DCE;②BH⊥DE.
(2)當點G運動到什么位置時,BH垂直平分DE?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年我國科技實力進一步增強,嫦娥探月、北斗組網(wǎng)、航母海試、鯤龍擊水、港珠澳大橋正式通車……,這些成就的取得離不開國家對科技研發(fā)的大力投入.下圖是2014年—2018年我國研究與試驗發(fā)展(R&D)經(jīng)費支出及其增長速度情況. 2018年我國研究與試驗發(fā)展(R&D)經(jīng)費支出為19657億元,比上年增長11.6%,其中基礎研究經(jīng)費1118億元.
根據(jù)統(tǒng)計圖提供的信息,下列說法中合理的是( )
A. 2014年—2018年,我國研究與試驗發(fā)展(R&D)經(jīng)費支出的增長速度始終在增加
B. 2014年—2018年,我國研究與試驗發(fā)展(R&D)經(jīng)費支出增長速度最快的年份是2017年
C. 2014年—2018年,我國研究與試驗發(fā)展(R&D)經(jīng)費支出增長最多的年份是2017年
D. 2018年,基礎研究經(jīng)費約占該年研究與試驗發(fā)展( (R&D)經(jīng)費支出的10%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應的任務:
萊昂哈德歐拉(LeonhardEuler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面就是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,R和r分別為外接圓和內切圓的半徑,O和I分別為其中外心和內心,則OI2=R2﹣2Rr.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內切圓,⊙I與AB相切于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等).
∴△MDI∽△ANI.
∴,
∴IAID=IMIN,①
如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BE,BD,BI,IF.
∵DE是⊙O的直徑,所以∠DBE=90°.
∵⊙I與AB相切于點F,所以∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對的圓周角相等),
∴△AIF∽△EDB,
∴.
∴IABD=DEIF②
任務:(1)觀察發(fā)現(xiàn):IM=R+d,IN= (用含R,d的代數(shù)式表示);
(2)請判斷BD和ID的數(shù)量關系,并說明理由.
(3)請觀察式子①和式子②,并利用任務(1),(2)的結論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應用:在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm,點O為AB中點,點I是△ABC的內心,則OI= cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某茶葉經(jīng)銷商以每千克18元的價格購進一批寧波白茶鮮茶葉加工后出售, 已知加工過程中質量損耗了40%, 該商戶對該茶葉試銷期間, 銷售單價不低于成本單價,且每千克獲利不得高于成本單價的60%,經(jīng)試銷發(fā)現(xiàn),每天的銷售量y(千克)與銷售單價x(元/千克)符合一次函數(shù),且x=35時,y=45;x=42時,y=38.
(1)求一次函數(shù)的表達式;
(2)若該商戶每天獲得利潤(不計加工費用)為W元,試寫出利潤W與銷售單價x之間的關系式;銷售單價每千克定為多少元時,商戶每天可獲得最大利潤,最大利潤是多少元?
(3)若該商戶每天獲得利潤不低于225元,試確定銷售單價x的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊材料的形狀是銳角三角形ABC,邊BC長120mm,高AD為80mm,把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.
(1)圖中與△ABC相似的三角形是哪一個,說明理由;
(2)這個正方形零件的邊長為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com