【題目】如圖,拋物線y=ax2+bx+4交y軸于點(diǎn)A,交過點(diǎn)A且平行于x軸的直線于另一點(diǎn)B,交x軸于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D右邊),對稱軸為直線x=,連接AC,AD,BC.若點(diǎn)B關(guān)于直線AC的對稱點(diǎn)恰好落在線段OC上,下列結(jié)論中錯誤的是( )
A.點(diǎn)B坐標(biāo)為(5,4)B.AB=ADC.a=D.OCOD=16
【答案】D
【解析】
由拋物線y=ax2+bx+4交y軸于點(diǎn)A,可得點(diǎn)A的坐標(biāo),然后由拋物線的對稱性可得點(diǎn)B的坐標(biāo),由點(diǎn)B關(guān)于直線AC的對稱點(diǎn)恰好落在線段OC上,可知∠ACO=∠ACB,再結(jié)合平行線的性質(zhì)可判斷∠BAC=∠ACB,從而可知AB=AD;過點(diǎn)B作BE⊥x軸于點(diǎn)E,由勾股定理可得EC的長,則點(diǎn)C坐標(biāo)可得,然后由對稱性可得點(diǎn)D的坐標(biāo),則OCOD的值可計(jì)算;由勾股定理可得AD的長,由交點(diǎn)式可得拋物線的解析式,根據(jù)以上計(jì)算或推理,對各個選項(xiàng)作出分析即可.
解:因?yàn)閽佄锞y=ax2+bx+4交y軸于點(diǎn)A,所以A(0,4).因?yàn)閷ΨQ軸為直線x=,AB∥x軸,所以B(5,4),選項(xiàng)A正確,不符合題意.如答圖,過點(diǎn)B作BE⊥x軸于點(diǎn)E,則BE=4,AB=5.因?yàn)?/span>AB∥x軸,所以∠BAC=∠ACO.因?yàn)辄c(diǎn)B關(guān)于直線AC的對稱點(diǎn)恰好落在線段OC上,所以∠ACO=∠ACB,所以∠BAC=∠ACB,所以BC=AB=5.在Rt△BCE中,由勾股定理得EC=3,所以C(8,0),因?yàn)閷ΨQ軸為直線x=,所以D(-3,0).在Rt△ADO中,OA=4,OD=3,所以AD=5,所以AB=AD,選項(xiàng)B正確,不符合題意.設(shè)y=ax2+bx+4=a(x+3)(x-8),將A(0,4)代入得4=a(0+3)(0-8),解得a=,選項(xiàng)C正確,不符合題意.因?yàn)?/span>OC=8,OD=3,所以OCOD=24,選項(xiàng)D錯誤,符合題意,因此本題選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售10臺A型和20臺B型加濕器的利潤為2500元,銷售20臺A型和10臺B型加濕器的利潤為2000元
(1)求每臺A型加濕器和B型加濕器的銷售利潤;
(2)該商店計(jì)劃一次購進(jìn)兩種型號的加濕器共100臺,其中B型加濕器的進(jìn)貨量不超過A型加濕器的2倍,設(shè)購進(jìn)A型加濕器x臺.這100臺加濕器的銷售總利潤為y元
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店應(yīng)怎樣進(jìn)貨才能使銷售總利潤最大?
(3)實(shí)際進(jìn)貨時,廠家對A型加濕器出廠價下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型加濕器70臺,若商店保持兩種加濕器的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺加濕器銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個圖案中白色正方形比黑色正方形多________個.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會準(zhǔn)備調(diào)查七年級學(xué)生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).
類別 | 頻數(shù)(人數(shù)) | 頻率 |
武術(shù)類 | 0.20 | |
書畫類 | 15 | 0.l5 |
棋牌類 | 25 | |
器樂類 | ||
合計(jì) | 1.00 |
(1)確定調(diào)查方式時,甲同學(xué)說:“我到七年級(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說:“放學(xué)時我到校門口隨機(jī)調(diào)查部分同學(xué)”;丙同學(xué)說:“我到七年級每個班隨機(jī)調(diào)查一定數(shù)量的同學(xué)”.請指出哪位同學(xué)的調(diào)查方式最合理.
(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.請你根據(jù)以上圖表提供的信息解答下列問題:
①____,_____;
②在扇形統(tǒng)計(jì)圖中,器樂類所對應(yīng)扇形的圓心角是_____度;
③若該校七年級有學(xué)生460人,請你估計(jì)大約有多少學(xué)生參加武術(shù)類校本課程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與這個二次函數(shù)圖象的對稱軸交于點(diǎn)C,設(shè)二次函數(shù)圖象的頂點(diǎn)為D.
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的解析式;
(3)若,且△ACD的面積等于10,請直接寫出滿足條件的點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某測繪公司借助大型無人飛機(jī)航拍測繪.如圖,無人飛機(jī)從C處放飛迅速爬升到點(diǎn)A處,繼續(xù)水平飛行400米到達(dá)B處共需150秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.己知無人飛機(jī)的水平飛行速度為4米/秒,求這架無人飛機(jī)從C到A的爬升速度及水平飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點(diǎn),AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當(dāng)AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,平分,與對角線相交于點(diǎn),是線段的中點(diǎn),則下列結(jié)論中:①;②;③;④,正確的有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某水產(chǎn)養(yǎng)殖戶開發(fā)一個三角形狀的養(yǎng)殖區(qū)域,A、B、C三點(diǎn)的位置如圖所示.已知∠CAB=105°,∠B=45°,AB=100米.(參考數(shù)據(jù):≈1.41,≈1.73,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,結(jié)果保留整數(shù))
(1)求養(yǎng)殖區(qū)域△ABC的面積;
(2)養(yǎng)殖戶計(jì)劃在邊BC上選一點(diǎn)D,修建垂釣棧道AD,測得∠CAD=40°,求垂釣棧道AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com