【題目】1)如圖1,在四邊形ABCD中,AB=BC=CD=DA=5 cm,BD=8 cm.則AC= cm;

2)在寬為8 cm 的長方形紙帶上,用圖1中的四邊形設計如圖2所示的圖案.

①如果用7個圖1中的四邊形設計圖案,那么至少需要 cm長的紙帶;

②設圖1中的四邊形有x個,所需的紙帶長為y cm,求yx之間的函數(shù)表達式;

③在長為40 cm的紙帶上,按照這種方法,最多能設計多少個圖1中的四邊形?

【答案】(1)6;(2)20,,12.

【解析】

(1)由題意得,四邊形為菱形,根據(jù)菱形的性質利用勾股定理解出即可.

(2)①通過前三個四邊形尋找規(guī)律即可解出.②利用①中的規(guī)律表示出來即可.③令y40解出x的范圍,即可找到最大的值.

(1)ACBD的交點為O,

AB=BC=CD=DA=5 cm,

∴四邊形ABCD為菱形,

OD=,ABAC,

OC=.

AC=6.

(2)①由圖可知:1個四邊形需要2×3=6cm,2個四邊形需要3×3=9cm,3個四邊形需要4×3=20cm……,

所以7個四邊形需要8×3=24cm長的紙帶.

②由①中規(guī)律可得:.

③將y40代入②的表達式中,可得x.

所以最多能設計12個四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OAOB相交于M、N兩點,則以下結論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結論正確的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,ADDC,BAD=100°,在BC、CD上分別找一點M、N,當AMN的周長最小時,∠AMN+ANM的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點軸上,,,將繞點按順時針方向旋轉得到,則點的坐標是(

A. (2,-2) B. (2,-2) C. (2,2) D. (2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活中,有人喜歡把傳送的便條折成形狀,折疊過程按圖①、④的順序進行(其中陰影部分表示紙條的反面):如果由信紙折成的長方形紙條(圖①)長為厘米,分別回答下列問題:

如果長方形紙條的寬為厘米,并且開始折疊時起點與點的距離為厘米,那么在圖②中,________厘米;在圖④中,________厘米.

如果長方形紙條的寬為厘米,現(xiàn)不但要折成圖④的形狀,而且為了美觀,希望紙條兩端超出點的長度相等,即最終圖形是軸對稱圖形,試求在開始折疊時起點與點的距離(結果用表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)在第一象限內的圖象交于、兩點,且與軸的正半軸交于點.若的面積為,則的值為(

A. 6 B. 9 C. 12 D. 18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動小組組織一次登山活動,他們從山腳下點出發(fā)沿斜坡到達點,再從點沿斜坡到達山頂點,路線如圖所示.斜坡的長為米,斜坡的長為米,坡度是,已知點海拔米,點海拔米.

點測得點的俯角為________,并求點的海拔;

求斜坡的坡度;

為了方便上下山,若在之間架設一條鋼纜,求鋼纜的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( 。

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

同步練習冊答案