【題目】已知反比例函數(shù)(k≠8)的圖像經(jīng)過點(diǎn)A(1,6).
(1)求k的值;
(2)如圖,過點(diǎn)A作直線AC與函數(shù)的圖像交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求直線AC的解析式;
(3)在(2)的條件下,連接OA,過y軸的正半軸上的一點(diǎn)D作直線DE∥x軸,分別交線段AC、OA于點(diǎn)E、F,若△AEF的面積為,求點(diǎn)D的坐標(biāo).
【答案】(1)2;(2);(3)D(0,4).
【解析】
(1)根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出的值;
(2)根據(jù)結(jié)合點(diǎn)、的縱坐標(biāo)即可得出點(diǎn)的縱坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出點(diǎn)的坐標(biāo),根據(jù)點(diǎn)、的坐標(biāo)利用待定系數(shù)法即可求出直線的解析式,即為直線AC的解析式;
(3)先求出△ACO的面積,由DE∥x軸可知,由面積比等于相似比的平方可求出,由此求出E點(diǎn)縱坐標(biāo),即可得D點(diǎn)坐標(biāo).
解:(1)將點(diǎn)代入中,
得:,解得:.
(2),點(diǎn)的縱坐標(biāo)為6,點(diǎn)的縱坐標(biāo)為0,
點(diǎn)的縱坐標(biāo)為2,
點(diǎn)為反比例函數(shù)上的圖象,
.
設(shè)直線的解析式為,
將、代入中,
得:,解得:,
直線的解析式為,
直線的解析式為.
(3)令中,則,
.
∴,
∵DE∥x軸,
∴,
∴,
∴,
∴點(diǎn)的縱坐標(biāo)為4,
∴點(diǎn)D的坐標(biāo) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情初期,某市出臺(tái)《中小學(xué)教師志愿輔導(dǎo)工作實(shí)施意見》,鼓勵(lì)教師參與志愿輔導(dǎo),該市率先示范,推出名師公益課程,為學(xué)生提供線上免費(fèi)輔導(dǎo),據(jù)統(tǒng)計(jì),第一批公益課受益學(xué)生萬人次,第三批公益課受益人數(shù)萬人次.
(1)如果第二批,第三批公益課受益學(xué)生人次的增長率相同,求這個(gè)增長率;
(2)按照這個(gè)增長率,預(yù)計(jì)第四批公益課受益學(xué)生將達(dá)到多少萬人次?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第5代移動(dòng)通信技術(shù)簡稱5G,某地已開通5G業(yè)務(wù),經(jīng)測(cè)試5G下載速度是4G下載速度的15倍,小明和小強(qiáng)分別用5G與4G下載一部600兆的公益片,小明比小強(qiáng)所用的時(shí)間快140秒,求該地4G與5G的下載速度分別是每秒多少兆?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=6,DC=2,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為( 。
A.8B.10C.12D.14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于,點(diǎn),與軸交于點(diǎn),拋物線的頂點(diǎn)為,連接.
(1)求此拋物線的表達(dá)式;
(2)在拋物線上找一點(diǎn),使得與垂直,且直線與軸交于點(diǎn),求點(diǎn)的坐標(biāo);
(3)拋物線對(duì)稱軸上是否存在一點(diǎn),使得,若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開展“中國詩詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請(qǐng)用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開設(shè)的體育選修課有籃球、足球、排球、羽毛球、乒乓球,學(xué)生可以根據(jù)自己的愛好選修其中1門.某班班主任對(duì)全班同學(xué)的選課情況進(jìn)行了調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(圖(1)和圖(2)):
(1)請(qǐng)你求出該班的總?cè)藬?shù),并補(bǔ)全條形圖(注:在所補(bǔ)小矩形上方標(biāo)出人數(shù));
(2)在該班團(tuán)支部4人中,有1人選修排球,2人選修羽毛球,1人選修乒乓球.如果該班班主任要從他們4人中任選2人作為學(xué)生會(huì)候選人,那么選出的兩人中恰好有1人選修排球、1人選修羽毛球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某區(qū)九年級(jí)數(shù)學(xué)教學(xué)質(zhì)量檢測(cè)情況,進(jìn)行了抽樣調(diào)查,其過程如下,請(qǐng)補(bǔ)全表一、表二中的空白,并回答提出的問題.
收集數(shù)據(jù):隨機(jī)抽取甲、乙兩所學(xué)校中各自取20名學(xué)生的數(shù)學(xué)成績進(jìn)行分析
甲:91 89 77 86 71 31 97 93 72 91 81 92 85 85 95 88 88 90 44 91
乙:84 93 66 69 76 87 77 82 85 88 90 88 67 88 91 96 68 97 59 88
整理數(shù)據(jù):表一
分段 學(xué)校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 | 0 | 0 | 1 | 2 | 8 | 5 |
分析數(shù)據(jù):表二
統(tǒng)計(jì)量 學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | 115.25 |
得出結(jié)論:
(1)若甲學(xué)校有400名九年級(jí)學(xué)生,估計(jì)這次考試成績80分(包含80分)以上人數(shù)為 .
(2)可以推斷出 (填:甲或乙)學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由是 (至少從兩個(gè)不同角度說明推斷的合理性).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了慶祝建國七十周年,決定舉辦一臺(tái)文藝晚會(huì),為了了解學(xué)生最喜愛的節(jié)目形式,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,規(guī)定每人從“歌曲”,“舞蹈”,“小品”,“相聲”和“其它”五個(gè)選項(xiàng)中選擇一個(gè),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中信息,解答下列題:
最喜愛的節(jié)目 | 人數(shù) |
歌曲 | 15 |
舞蹈 | a |
小品 | 12 |
相聲 | 10 |
其它 | b |
(1)在此次調(diào)查中,該校一共調(diào)查了 名學(xué)生;
(2)a= ;b= ;
(3)在扇形計(jì)圖中,計(jì)算“歌曲”所在扇形的圓心角的度數(shù);
(4)若該校共有1200名學(xué)生,請(qǐng)你估計(jì)最喜愛“相聲”的學(xué)生的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com