【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)60°.(2)∠AEB=90°,AE=BE+2CM.理由見解析.
【解析】解:(1)∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°﹣∠DCB=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°,
∴∠BEC=120°.
∴∠AEB=∠BEC﹣∠CED=60°.
(2)
∵△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°
∴CA=CB,CD=CE.
且∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=135°,
∴∠BEC=135°.
∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,但是由于1<<2,所以的整數(shù)部分為1,將減去其整數(shù)部分1,差就是小數(shù)部分-1,根據(jù)以上的內(nèi)容,解答下面的問題:
(1)的整數(shù)部分是 ,小數(shù)部分是 ;
(2)1+的整數(shù)部分是 ,小數(shù)部分是 ;
(3)若設(shè)2+整數(shù)部分是x,小數(shù)部分是y,求x-y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(4,0)、(0,3).
(1)求AB的長度.
(2)如圖2,若以AB為邊在第一象限內(nèi)作正方形ABCD,求點(diǎn)C的坐標(biāo).
(3)在x軸上是否存一點(diǎn)P,使得⊿ABP是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)若一個(gè)矩形的一邊是另一邊的兩倍,則稱這個(gè)矩形為方形,如圖1,矩形ABCD中,BC=2AB,則稱ABCD為方形.
(1)設(shè)a,b是方形的一組鄰邊長,寫出a,b的值(一組即可);
(2)在△ABC中,將AB,AC分別五等分,連結(jié)兩邊對應(yīng)的等分點(diǎn),以這些連結(jié)為一邊作矩形,使這些矩形的邊B1C1,B2C2,B3C3,B4C4的對邊分別在B2C2,B3C3,B4C4,BC上,如圖2所示.
①若BC=25,BC邊上的高為20,判斷以B1C1為一邊的矩形是不是方形?為什么?
②若以B3C3為一邊的矩形為方形,求BC與BC邊上的高之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.
(1)折疊后,DC的對應(yīng)線段是 ,CF的對應(yīng)線段是 ;
(2)△EBF是等腰三角形嗎?請說明理由;
(3)若AB=4,AD=8,求△EBF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過點(diǎn)Pi(i,0)(i=1、2、…、n)作x軸的垂線,交的圖象于點(diǎn)Ai,交直線于點(diǎn)Bi.則=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com