【題目】已知OA是⊙O的半徑,OA=1,點(diǎn)POA上一動(dòng)點(diǎn),過P作弦BCOA,連接ABAC

1)如圖1,若POA中點(diǎn),則AC=______,∠ACB=_______°;

2)如圖2,若移動(dòng)點(diǎn)P,使ABCO的延長線交于點(diǎn)D.記AOC的面積為S1,BOD的面積為S2AOD的面積為S3,且滿足,求的值.

【答案】1130;(2

【解析】

1)證得△AOC為等邊三角形,得出AC1,∠ACO60°,可求出答案;

2)若DC與圓O相交于點(diǎn)E,連接BE,證明△ABO≌△ACOSSS),得出SABOSACOS1,由題意得出()210,解得:,求出,證明△AOD∽△BED,得出=,得出OPBE,則可求出答案.

解:(1)∵BCOA,OB=OC,

BP=CP,

POA的中點(diǎn),

OP=AP,

OA垂直平分BC,且BC垂直平分OA,

∴四邊形ABOC是菱形,

AC=OC=OA=1,BC平分∠ACO,

∴△AOC是等邊三角形,

∴∠ACO=60°,

∴∠ACB=ACO=30°,

故答案為:130;

2)連接

,

,

,AO=AO

,

,

,

,

,

解得,,

,即,

為直徑,

,

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把有一組鄰邊相等,一組對(duì)邊平行但不相等的四邊形稱作“準(zhǔn)菱形”.

1)證明“準(zhǔn)菱形”性質(zhì):“準(zhǔn)菱形”的一條對(duì)角線平分一個(gè)內(nèi)角.

(要求:根據(jù)圖1寫出已知,求證,證明)

已知:

求證:

證明:

2)已知.在△ABC中,∠A=90°,AB=3,AC=4.若點(diǎn)DE分別在邊BC,AC上,且四邊形ABDE為“準(zhǔn)菱形”.請(qǐng)?jiān)谙铝薪o出的△ABC中,作出滿足條件的所有“準(zhǔn)菱形”ABDE,并寫出相應(yīng)DE的長.(所給△ABC不一定都用,不夠可添)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸交于兩點(diǎn),與反比例函數(shù)的圖象交于點(diǎn),過點(diǎn)軸,垂足為,連接.已知

1)如果,求的值;

2)試探究的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對(duì)比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

<>

2

3

5

-3

-2

0

描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:

1)請(qǐng)把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時(shí),的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個(gè)單位而得到的;

③圖象關(guān)于點(diǎn)______中心對(duì)稱.(填點(diǎn)的坐標(biāo))

3)函數(shù)與直線交于點(diǎn),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察以下等式:

1個(gè)等式:23-22=132×11

2個(gè)等式:33-32=233×222;

3個(gè)等式:43-42=334×332

……

按照以上規(guī)律,解決下列問題:

1)寫出第4個(gè)等式:__________________;

2)寫出你猜想的第n個(gè)等式(用含n的等式表示),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,半徑OAOB,過OA的中點(diǎn)CFDOB交⊙OD、F兩點(diǎn),且CD,以O為圓心,OC為半徑作,交OBE點(diǎn).則圖中陰影部分的面積為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南昌之星摩天輪,位于江西省南昌市紅谷灘新區(qū)紅角洲贛江邊上的贛江市民公園,摩天輪高160m(最高點(diǎn)到地面的距離).如圖,點(diǎn)O是摩天輪的圓心,AB是其垂直于地面的直徑,小賢在地面點(diǎn)C處利用測角儀測得摩天輪的最高點(diǎn)A的仰角為45°,測得圓心O的仰角為30°,則摩天輪的半徑為_____m.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)山峰的高度每增加1百米,氣溫大約降低0.6℃.氣溫T(℃)和高度h(百米)的函數(shù)關(guān)系如圖所示.請(qǐng)根據(jù)圖象解決下列問題:

1)求高度為5百米時(shí)的氣溫.

2)求T關(guān)于h的函數(shù)表達(dá)式.

3)測得山頂?shù)臍鉁貫?/span>6℃,求該山峰的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B4,0),C0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于軸對(duì)稱,點(diǎn)P軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(,0),過點(diǎn)P軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得BOD∽△QBM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

3)已知點(diǎn)F0,),當(dāng)點(diǎn)P軸上運(yùn)動(dòng)時(shí),試求為何值時(shí),以DMQ,F為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

同步練習(xí)冊答案