分析 (1)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì)即可解決問(wèn)題.
(2)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì),分別求出S1、S2即可解決問(wèn)題.
(3)過(guò)點(diǎn)G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形,利用(2)的結(jié)論求出□DBHG的面積,△GHC的面積即可.
解答 解:(1)∵DE∥BC,EF∥AB,
∴四邊形DBFE是平行四邊形,
∴S=2×3=6,S1=$\frac{1}{2}$×6×3=9,
∴∠AED=∠C,∠A=∠CEF
∴△ADE∽△EFC
∴$\frac{{s}_{2}}{{s}_{1}}$=($\frac{DE}{CF}$)2=$\frac{1}{9}$,
∴S2=1,
故答案為6,9,1.
(2)證明:∵DE∥BC,EF∥AB
∴四邊形DBFE為平行四邊形,
∴∠AED=∠C,∠A=∠CEF
∴△ADE∽△EFC.
∴$\frac{{S}_{2}}{{S}_{1}}$=($\frac{DE}{FC}$)2=$\frac{{a}^{2}}{^{2}}$,
∵S1=$\frac{1}{2}$bh,
∴S2=$\frac{{a}^{2}}{^{2}}$×S1=$\frac{{a}^{2}h}{2b}$,
∴4S1S2=4×$\frac{1}{2}$bh×$\frac{{a}^{2}h}{2b}$=(ah)2而S=ah,
∴S2=4S1S2.
(3)解:過(guò)點(diǎn)G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形.
∴∠GHC=∠B,BD=HG,DG=BH,
∵四邊形DEFG為平行四邊形,
∴DG=EF.
∴BH=EF.
∴BE=HF,
∴△DBE≌△GHF.
∴△GHC的面積為5+3=8.
由(2)得,□DBHG的面積為$\sqrt{4×2×8}$=8,
∴△ABC的面積為2+8+8=18.
點(diǎn)評(píng) 本題考查四邊形綜合題、相似三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)轉(zhuǎn)化的思想,把問(wèn)題轉(zhuǎn)化為我們熟悉的題型,屬于中考?jí)狠S題,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k≤$\frac{4}{3}$ | B. | -$\frac{4}{3}$≤k≤-$\frac{1}{7}$ | C. | -$\frac{4}{3}$≤k≤-1 | D. | -$\frac{4}{3}$≤k≤$\frac{4}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1<b<8 | B. | 1≤b≤8 | C. | 2≤b≤8 | D. | 2≤b<8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5件 | B. | 6件 | C. | 7件 | D. | 8件 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com