分析 (1)由正方形得到判斷△CBE≌△CDF即可;
(2)由判斷△CBE≌△CDF的特點(diǎn)構(gòu)造出△ECG≌△FCG,即可;
(3)由條件構(gòu)造出正方形ABCD,再由勾股定理建立方程DE2=AD2+AE2,計(jì)算出相關(guān)的線段,即可.
解答 解:(1)在正方形ABCD中,
∴$\left\{\begin{array}{l}{BC=CD}\\{∠B=∠CDF}\\{BE=DF}\end{array}\right.$,
∴△CBE≌△CDF,
∴CE=CF;
(2)如圖2,
延長AD至F,使DF=BE.連接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∠GCE=45°,
∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF
∴GE=DF+GD=BE+GD;
(3)如圖3,
過C作CG⊥AD,交AD延長線于G,
在直角梯形ABCD中,
∵AD∥BC,
∴∠A=∠B=90°,
又∠CGA=90°,AB=BC,
∴四邊形ABCD 為正方形,
∴AG=BC,
已知∠DCE=45°,
根據(jù)(1)(2)可知,ED=BE+DG,
所以10=4+DG,即DG=6,
設(shè)AB=x,則AE=x-4,AD=x-6
在Rt△AED中,
∵DE2=AD2+AE2,即102=(x-6)2+(x-4)2,
解這個(gè)方程,得:x=12,或x=-2(舍去),
∴AB=12,
所以梯形ABCD的面積為S=S=$\frac{1}{2}$(AD+BC)AB=$\frac{1}{2}$(6+12)×12=108.
點(diǎn)評(píng) 此題是四邊形的綜合題,主要考查了正方形的性質(zhì)和判定,解本題的難點(diǎn)是構(gòu)造三角形如(2)△CDF和正方形如(3)正方形ABCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 逐漸變短 | B. | 逐漸變長 | C. | 先變短后變長 | D. | 先變長后變短 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{7}$ | D. | $\frac{7}{11}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com