【題目】巴南區(qū)認(rèn)真落實“精準(zhǔn)扶貧”.某“建卡貧困戶”在黨和政府的關(guān)懷和幫助下投資了一個魚塘,經(jīng)過一年多的精心養(yǎng)殖,今年10月份從魚塘里捕撈了草魚和花鰱共2500千克,在市場上草魚以每千克16元的價格出售,花鰱以每千克24元的價格出售,這樣該貧困戶10月份收入52000元,

1)今年10月份從魚塘里捕撈草魚和花鰱各多少千克?

2)該貧困戶今年12月份再次從魚塘里捕撈.捕撈數(shù)量和銷售價格上,草魚數(shù)量比10月份減少了千克,銷售價格不變;花鰱數(shù)量比10月份減少了,銷售價格比10月份減少了,該貧困戶在10月份和12月份兩次捕撈中共收入了94040元,真正達到了脫貧致富,求的值.

【答案】1)該貧困戶今年10月份從魚塘里捕撈草魚1000千克和花鰱1500千克;(230.

【解析】

1)設(shè)從魚塘里捕撈草魚x千克和花鰱y千克,根據(jù)“10月份從魚塘里捕撈了草魚和花鰱共2500千克草魚以每千克16元的價格出售,花鰱以每千克24元的價格出售,共收入52000列出方程組求解即可;

2)分別求出12月份草魚的數(shù)量和售價,花鰱的數(shù)量和售價,根據(jù)收入是(94040-52000)元列出方程求解即可.

1)設(shè)從魚塘里捕撈草魚x千克和花鰱y千克,根據(jù) 題意得,

,

解得,

所以,該貧困戶今年10月份從魚塘里捕撈草魚1000千克和花鰱1500千克;

2)該貧困戶12月份從魚塘里捕撈草魚(1000-2a)千克,售價為16元,

捕撈花鰱1500千克,售價為元,

12月份總收入為(94040-52000=42040元,

所以可得:

解得:a=30.

a的值為30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我市某中學(xué)在創(chuàng)建特色校園的活動中,將學(xué)校的辦學(xué)理念做成了宣傳牌(CD),放置在教學(xué)樓的頂部(如圖所示),該中學(xué)數(shù)學(xué)活動小組的同學(xué)在山坡坡腳A處測得宣傳牌底D的仰角為60°,沿坡AB向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為,AB=10米,AE=15米.

(1)求點B距水平面AE的高度BH;

(2)求宣傳牌CD的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,FDC的中點,EBC上一點,CE=BC,求證:∠AFE是直角。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°

1)求證:四邊形AECF是菱形;

2)若∠B=30°,BC=10,求菱形AECF面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃開設(shè)4門選修課:音樂、繪畫、體育、舞蹈,學(xué)校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門),對調(diào)查結(jié)果進行統(tǒng)計后,繪制了如下不完整的兩個統(tǒng)計圖.

根據(jù)以上統(tǒng)計圖提供的信息,回答下列問題:

1)此次調(diào)查抽取的學(xué)生人數(shù)為a= 人,其中選擇繪畫的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b=

2)補全條形統(tǒng)計圖;

3)若該校有2000名學(xué)生,請估計全校選擇繪畫的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點、在線段上,且,點是線段的中點,點是線段上的一點,且

1)若點是線段的中點,求的長;

2)若點是線段的三等分點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的對角線相交于點

(1)如圖1,分別是,上的點,的延長線相交于點.若,求證:;

(2)如圖2,上的點,過點,交線段于點,連結(jié)于點,交于點.若,

求證:;

當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的骰子,骰子的六個面分別刻有1到6的點數(shù),朝上的面的點數(shù)中,一個點數(shù)能被另一個點數(shù)整除的概率是 

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,已知拋物線yax2bx8x軸交于A,B兩點,與y軸交于點C,直線l經(jīng)過坐標(biāo)原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標(biāo)分別為(2,0),(6,-8)

(1)求拋物線的解析式,并分別求出點B和點E的坐標(biāo);

(2)試探究拋物線上是否存在點F,使△FOE≌△FCE.若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案