【題目】如圖,點、在線段上,且,點是線段的中點,點是線段上的一點,且.
(1)若點是線段的中點,求的長;
(2)若點是線段的三等分點,求的長.
【答案】(1)14;(2)或.
【解析】
(1)設(shè)AB=2x,則BC=3x,CD=4x.根據(jù)線段中點的性質(zhì)求出MC、CN,列出方程求出x,計算即可;
(2)分兩種情況:①當(dāng)N在CD的第一個三等分點時,根據(jù)MN=9,求出x的值,再根據(jù)BD=BC+CD求出結(jié)果即可;②當(dāng)N在CD的第二個三等分點時,方法同①.
設(shè)AB=2x,則BC=3x,CD=4x.
∴AC=AB+BC=5x,
∵點M是線段AC的中點,
∴MC=2.5x,
∵點N是線段CD的中點,
∴CN=2x,
∴MN=MC+CN=2.5x+2x=4.5x
∵MN=9,
∴4.5x=9,解得x=2,
∴BD=BC+CD=3x+4x=7x=14.
(2)情形1:當(dāng)N在CD的第一個三等分點時,CN=,
∴MN=MC+CN=
解得,,
∴BD=BC+CD=3x+4x=7x=;
情形2:當(dāng)當(dāng)N在CD的第二個三等分點時,CN=,
∴MN=MC+CN=
解得,,
∴BD=BC+CD=3x+4x=7x=;
故BD 的長為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)庫存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨修完這些桌椅比乙單獨修完多用20天,學(xué)校每天付甲組80元修理費,付乙組120元修理費。
(1)該中學(xué)庫存多少套桌椅?
(2)在修理過程中,學(xué)校要派一名工人進行質(zhì)量監(jiān)督,學(xué)校負擔(dān)他每天10元生活補助費,現(xiàn)有三種修理方案:a、由甲單獨修理;b、由乙單獨修理;c、甲、乙合作同時修理。你認為哪種方案省時又省錢?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問題遷移:如圖2,AB∥CD,點P在射線OM上運動,記∠PAB=α,∠PCD=β,當(dāng)點P在B、D兩點之間運動時,問∠APC與α、β之間有何數(shù)量關(guān)系?請說明理由;
(3)在(2)的條件下,如果點P在B、D兩點外側(cè)運動時(點P與點O、B、D三點不重合),請直接寫出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴南區(qū)認真落實“精準(zhǔn)扶貧”.某“建卡貧困戶”在黨和政府的關(guān)懷和幫助下投資了一個魚塘,經(jīng)過一年多的精心養(yǎng)殖,今年10月份從魚塘里捕撈了草魚和花鰱共2500千克,在市場上草魚以每千克16元的價格出售,花鰱以每千克24元的價格出售,這樣該貧困戶10月份收入52000元,
(1)今年10月份從魚塘里捕撈草魚和花鰱各多少千克?
(2)該貧困戶今年12月份再次從魚塘里捕撈.捕撈數(shù)量和銷售價格上,草魚數(shù)量比10月份減少了千克,銷售價格不變;花鰱數(shù)量比10月份減少了,銷售價格比10月份減少了,該貧困戶在10月份和12月份兩次捕撈中共收入了94040元,真正達到了脫貧致富,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值
(1)已知A=2x2-4xy-2x-3,B=-x2+xy+2,當(dāng)x,y滿足|x+1|+(y-2)2=0時,求A-B的值;
(2)某同學(xué)做數(shù)學(xué)題“兩個多項式A、B,B為4x2-5x-6,求A+B”時,誤將A+B看成了A -B,求得的答案是-7x2+10x+12.
①請你寫出A+B的正確答案;
②求當(dāng)x=-3時,A+B的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長為多少?
(3)連接OD,OE,當(dāng)∠DOE=90°時,AE恰好是⊙O內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠以80元/箱的價格購進60箱原材料,準(zhǔn)備由甲、乙兩車間全部用于生產(chǎn)A產(chǎn)品.甲車間用每箱原材料可生產(chǎn)出A產(chǎn)品12千克,需耗水4噸;乙車間通過節(jié)能改造,用每箱原材料可生產(chǎn)出的A產(chǎn)品比甲車間少2千克,但耗水量是甲車間的一半.已知A產(chǎn)品售價為30元/千克,水價為5元/噸.設(shè)甲車間用x箱原材料生產(chǎn)A產(chǎn)品.
(1)用含x的代數(shù)式表示:乙車間用________箱原材料生產(chǎn)A產(chǎn)品;
(2)求兩車間生產(chǎn)這批A產(chǎn)品的總耗水量;
(3)若兩車間生產(chǎn)這批產(chǎn)品的總耗水為200噸,則該廠如何分配兩車間的生產(chǎn)原材料?
(4)用含x的代數(shù)式表示這次生產(chǎn)所能獲取的利潤并化簡.(注:利潤=產(chǎn)品總售價-購買原材料成本-水費)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)將某班級畢業(yè)升學(xué)體育測試成績(滿分30分)統(tǒng)計整理,得到下表,則下列說法錯誤的是( 。
分數(shù) | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
人數(shù) | 2 | 4 | 3 | 8 | 10 | 9 | 6 | 3 | 1 |
A. 該組數(shù)據(jù)的眾數(shù)是24分
B. 該組數(shù)據(jù)的平均數(shù)是25分
C. 該組數(shù)據(jù)的中位數(shù)是24分
D. 該組數(shù)據(jù)的極差是8分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com