【題目】二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,則下列正確的說法有( )
①點P(ac,b)在第二象限;
②x>1時y隨x的增大而增大;
③b2﹣4ac>0;
④關(guān)于x的一元二次方程ax2+bx+c=0解為x1=﹣1,x2=3;
⑤關(guān)于x的不等式ax2+bx+c>0 的解集為0<x<3.

A.2個
B.3個
C.4個
D.5個

【答案】B
【解析】解:①∵拋物線的開口向下,
∴a<0,
∵拋物線的對稱軸在y軸的右側(cè),即x=﹣ >0,
∴b>0,
由圖象可知拋物線與y軸的交點(0,c)在y軸的正半軸,
∴c>0,
∴ac<0
∴點P(ac,b)在第二象限;
所以此選項說法正確;
②由圖象得:當x>1時,y隨x的增大而減。
所以此選項說法不正確;
③∵拋物線與x軸有2個交點,
∴b2﹣4ac>0,
所以此選項說法正確;
④由圖象得:拋物線的對稱軸是:x=1,
由對稱性得:拋物線與x軸的交點是(﹣1,0)、(3,0),
∴關(guān)于x的一元二次方程ax2+bx+c=0解為x1=﹣1,x2=3;
所以此選項說法正確;
⑤由圖象得:當﹣1<x<3時,y>0,
∴關(guān)于x的不等式ax2+bx+c>0 的解集為﹣1<x<3,
所以此選項說法不正確;
所以本題說法正確的有:3個,
故選:B.
【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標軸的交點的相關(guān)知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c);一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點EAC的延長線上,有下列條件∠1=2,②∠3=4,③∠A=DCE,④∠D=DCE,⑤∠A+ABD=180°,⑥∠A+ACD=180°,其中能判斷ABCD的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).

(1)求直線AB的解析式;

(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;

(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)因式分解:﹣xyz2+4xyz﹣4xy;

2)因式分解:9m+n2m﹣n2

3)解方程: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化妝品店老板到廠家選購AB兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.

A、B兩種品牌的化妝品每套進價分別為多少元?

若銷售1A品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進B品牌化妝品的數(shù)量比購進A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CDBCE,OAC的中點,AB=,AD=2,BC=3,下列結(jié)論:

①∠CAE=30;②AC=2AB;③SADC=2SABE;④BO⊥CD,其中正確的是()

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,FAD的中點,作CEAB,垂足E在線段AB上,連接EFCF,則下列結(jié)論中一定成立的是 ( )

2DCF=BCD; EF=CF; SBEC=2SCEF; ④∠DFE=3AEF

A. ①②③④ B. ①②④ C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校對學生的課外閱讀時間進行抽樣調(diào)查,將收集的數(shù)據(jù)分成A、B、C、D、E五組進行整理,并繪制成如下的統(tǒng)計圖表(圖中信息不完整).

組別

閱讀時間x(時)

人數(shù)

A

0≤x<10

k

B

10≤x<20

100

C

20≤x<30

m

D

30≤x<40

140

E

x≥40

n

請結(jié)合以上信息解答下列問題

(1)閱讀時間分組統(tǒng)計表中k、m、n的值分別是   、      ;

(2)補全閱讀人數(shù)分組統(tǒng)計圖”;

(3)若全校有3000名學生,請估算全校課外閱讀時間在20小時以下(不含20小時)的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,若正方形CDEF的邊長為2,則圖中陰影部分的面積為(
A.π﹣2
B.2π﹣2
C.4π﹣4
D.4π﹣8

查看答案和解析>>

同步練習冊答案