18.若x+y=3且xy=1.
(1)求(x+2)(y+2)的值;
(2)求x2-3xy+y2的值.

分析 (1)利用多項(xiàng)式乘以多項(xiàng)式計(jì)算(x+2)(y+2)可得xy+2x+2y+4,然后再代入x+y=3,xy=1即可;
(2)首先把x2-3xy+y2化為x2+2xy+y2-5xy,再變形為(x+y)2-5xy,最后代入求值即可.

解答 解:(1)(x+2)(y+2),
=xy+2x+2y+4,
=xy+2(x+y)+4,
=1+2×3+4,
=11;

 (2)x2-3xy+y2=x2+2xy+y2-5xy=(x+y)2-5xy=9-5=4.

點(diǎn)評(píng) 此題主要考查了多項(xiàng)式乘法,以及完全平方公式,關(guān)鍵是正確把代數(shù)式進(jìn)行變形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.能被3整除的整數(shù)具有一些特殊的性質(zhì):
(1)定義一種能夠被3整除的三位數(shù)$\overline{abc}$的“F”運(yùn)算:把$\overline{abc}$的每一個(gè)數(shù)位上的數(shù)字都立方,再相加,得到一個(gè)新數(shù).例如$\overline{abc}$=213時(shí),則:213$\stackrel{F}{→}$36(23+13+33=36)$\stackrel{F}{→}$243(33+63=243).?dāng)?shù)字111經(jīng)過三次“F”運(yùn)算得351,經(jīng)過四次“F”運(yùn)算得153,經(jīng)過五次“F”運(yùn)算得153,經(jīng)過2016次“F”運(yùn)算得153.
(2)對(duì)于一個(gè)整數(shù),如果它的各個(gè)數(shù)位上的數(shù)字和可以被3整除,那么這個(gè)數(shù)就一定能夠被3整除,例如,一個(gè)四位數(shù),千位上的數(shù)字是a,百位上的數(shù)字是b,十位上的數(shù)字為c,個(gè)為上的數(shù)字為d,如果a+b+c+d可以被3整除,那么這個(gè)四位數(shù)就可以被3整除.你會(huì)證明這個(gè)結(jié)論嗎?寫出你的論證過程(以這個(gè)四位數(shù)為例即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.我們已經(jīng)學(xué)過用面積來說明公式,如(x+y)2=x2+2xy+y2就可以用如圖甲中的面積來說明,請(qǐng)寫出圖乙的面積所說明的公式:(p+x)(q+x)=x2+(p+q)x+pq.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在Rt△ABC中,CD是斜邊AB上的高,
求證:(1)AC2=AD•AB;
(2)CD2=BD•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)a,b,c>0,求證:(a+$\frac{1}$)(b+$\frac{1}{c}$)(c+$\frac{1}{a}$)≥8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.若(2x-1)3=0.027,則x=0.65;
若x3=-125,則(x-1)2=36.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.若m為正整數(shù),則(x3my÷$\frac{1}{2}$xm=2${x}^{{2}^{m}}y$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.對(duì)于正實(shí)數(shù)a、b,定義新運(yùn)算a*b=$\sqrt{ab}$-a+b.如果16*x2=61,求實(shí)數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.已知(x+y)2=16,(x-y)2=9,求xy與x2+y2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案