【題目】母親節(jié)期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行

銷售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))于銷售單價(jià)x(

/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示.

(1)試判斷yx之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)若許愿瓶的進(jìn)價(jià)為6/個(gè),按照上述市場(chǎng)調(diào)查銷售規(guī)律,求利潤(rùn)w()與銷售單價(jià)x(/個(gè))之間的

函數(shù)關(guān)系式;

(3)若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試求此時(shí)這種許愿瓶的銷售單價(jià),并求出

最大利潤(rùn).

【答案】1yx的一次函數(shù),y=30x+6002w=30x2780x36003)以15/個(gè)的價(jià)格銷售這批許愿瓶可獲得最大利潤(rùn)1350

【解析】

1)觀察可得該函數(shù)圖象是一次函數(shù),設(shè)出一次函數(shù)解析式,把其中兩點(diǎn)代入即可求得該函數(shù)解析式,進(jìn)而把其余兩點(diǎn)的橫坐標(biāo)代入看縱坐標(biāo)是否與點(diǎn)的縱坐標(biāo)相同.

2)銷售利潤(rùn)=每個(gè)許愿瓶的利潤(rùn)×銷售量.

3)根據(jù)進(jìn)貨成本可得自變量的取值,結(jié)合二次函數(shù)的關(guān)系式即可求得相應(yīng)的最大利潤(rùn).

解:(1yx的一次函數(shù),設(shè)y=kx+b,

圖象過(guò)點(diǎn)(10,300),(12240),

,解得∴y=30x600

當(dāng)x=14時(shí),y=180;當(dāng)x=16時(shí),y=120,

點(diǎn)(14,180),(16,120)均在函數(shù)y=30x+600圖象上.

∴yx之間的函數(shù)關(guān)系式為y=30x+600

2∵w=x6)(-30x600=30x2780x3600,

∴wx之間的函數(shù)關(guān)系式為w=30x2780x3600

3)由題意得:6(-30x+600≤900,解得x≥15

w=30x2780x3600圖象對(duì)稱軸為:

∵a=300拋物線開口向下,當(dāng)x≥15時(shí),wx增大而減小.

當(dāng)x=15時(shí),w最大=1350

15/個(gè)的價(jià)格銷售這批許愿瓶可獲得最大利潤(rùn)1350元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某健身器材公司銷售A,B兩款跑步機(jī),這兩款跑步機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

A

B

進(jìn)價(jià)臺(tái)

4500

6200

售價(jià)臺(tái)

6000

8000

該公司計(jì)劃購(gòu)進(jìn)兩款跑步機(jī)若干臺(tái),共需萬(wàn)元,全部銷售后可獲利萬(wàn)元.

問該公司計(jì)劃購(gòu)進(jìn)A,B兩款跑步機(jī)各多少臺(tái)?

為了適應(yīng)市場(chǎng)需求的變化,該公司決定在原計(jì)劃的基礎(chǔ)上,減少A款跑步機(jī)的購(gòu)進(jìn)數(shù)量,增加B款跑步機(jī)的購(gòu)進(jìn)數(shù)量,已知B款跑步機(jī)增加的數(shù)量是A款跑步機(jī)減少的數(shù)量的2倍.若用于購(gòu)進(jìn)這兩種款跑步機(jī)的總資金不超過(guò)29.6萬(wàn)元,問A種款跑步機(jī)購(gòu)進(jìn)數(shù)量至多減少多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足r,則稱點(diǎn)P為⊙O的“隨心點(diǎn)”.

1)當(dāng)⊙O的半徑r2時(shí),A(4,0),B(0,3)C(,﹣),D(,﹣2)中,⊙O的“隨心點(diǎn)”是   ;

2)若點(diǎn)E(6,8)是⊙O的“隨心點(diǎn)”,求⊙O的半徑r的取值范圍;

3)當(dāng)⊙O的半徑r4時(shí),直線y=﹣x+bb≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O的“隨心點(diǎn)”,直接寫出b的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點(diǎn),其中t>0,函數(shù)的圖象分別與線段BC,AC交于點(diǎn)P,Q.若SPAB-SPQB=t,則t的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A1,m),B4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'B'.若曲線段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⊙O中,AB為直徑,C⊙O上一點(diǎn).

(1)如圖1,過(guò)點(diǎn)C⊙O的切線,與AB延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的度數(shù);

(2)如圖2,D為弧AB上一點(diǎn),OD⊥AC,垂足為E,連接DC并延長(zhǎng),與AB的延長(zhǎng)線交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商場(chǎng)經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷售量將減少20千克.

1)現(xiàn)該商場(chǎng)要保證每天盈利6 000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

2)若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全越來(lái)越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問題:

1)接受問卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______;

2)扇形統(tǒng)計(jì)圖中了解很少部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為______;

3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對(duì)校園安全知識(shí)達(dá)到非常了解基本了解程度的總?cè)藬?shù)為______人;

4)若從對(duì)校園安全知識(shí)達(dá)到非常了解程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用列表或畫樹狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,分別在邊,上,,相交于點(diǎn),若,則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案