【題目】如圖,矩形中,,,點(diǎn)是邊上一點(diǎn),連接,把沿折疊,使點(diǎn)落在點(diǎn)處,當(dāng)為直角三角形時(shí),的長為__________.
【答案】或1.
【解析】
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí);②當(dāng)點(diǎn)B′落在AD邊上時(shí);分別求出BE的長度,即可得到答案.
解:當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.連結(jié)AC,
在Rt△ABC中,AB=1,BC=2,
∴AC=,
∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,
∴EB=EB′,AB=AB′=1,
∴CB′=,
設(shè)BE=x,則EB′=x,CE=2-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+()2=(2-x)2,
解得x=,
∴BE=;
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)ABEB′為正方形,
∴BE=AB=1.
故答案為:或1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠BAD的平分線交CD于點(diǎn)E,交BC的延長線于 點(diǎn)F,連接BE,∠F=45°.
(1)求證:四邊形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店的某種毛筆每支售價(jià)25元,書法練習(xí)本每本售價(jià)5元,該商店為促銷正在進(jìn)行優(yōu)惠活動:
活動1:買一支毛筆送一本書法練習(xí)本;
活動2:按購買金額的九折付款.
某學(xué)校準(zhǔn)備為書法興趣小組購買這種毛筆20支,書法練習(xí)本x(x≥20)本.
(1)寫出兩種優(yōu)惠活動實(shí)際付款金額y1(元),y2(元)與x(本)之間的函數(shù)關(guān)系式;
(2)請問:該校選擇哪種優(yōu)惠活動更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這n秒中上升的高度是_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量出大樓AB的高度,從距離樓底B處50米的點(diǎn)C(點(diǎn)C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進(jìn)20米到達(dá)點(diǎn)D,在點(diǎn)D處測得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)、,對連續(xù)作旋轉(zhuǎn)變換,依次得到,則的直角頂點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC與△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.現(xiàn)將△DEF與△ABC按如圖所示的方式疊放在一起,使△ABC保持不動,△DEF運(yùn)動,且滿足點(diǎn)E在邊BC上運(yùn)動(不與B,C重合),邊DE始終經(jīng)過點(diǎn)A,EF與AC交于點(diǎn)M.在△DEF運(yùn)動過程中,若△AEM能構(gòu)成等腰三角形,則BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=5,點(diǎn)P是邊AC上的一個(gè)動點(diǎn),∠APD=∠ABC,AD∥BC,連接CD.
(1)求證AD=2AP;
(2)如圖①,若BA與CD的延長線交于點(diǎn)M,AP=1,求AM的長;
(3)如圖②,若AB與DC的延長線交于點(diǎn)N,當(dāng)△CDP與△BCN相似時(shí),求證點(diǎn)P是AC的中點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com