在Rt△ABC中,∠C=90°,a:b=7:24,c=50cm,則a=
 
cm.
考點:勾股定理
專題:
分析:設a=7x,則b=24x,再根據(jù)勾股定理求出x的值,進而可得出結(jié)論.
解答:解:∵在Rt△ABC中,∠C=90°,a:b=7:24,c=50cm,
∴設a=7x,則b=24x,
∵a2+b2=c2,
∴(7x)2+(24x)2=502,
解得x=2,
∴a=7x=14.
故答案為:14.
點評:本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

若把函數(shù)y=x2+6x+5化為y=(x-m)2+k的形式,其中m、k為常數(shù),則k-m=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知∠α的補角等于123°,那么∠α等于
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1)表示1張餐桌和6張椅子(每個小半圓代表1張椅子),圖(2)表示2張餐桌和10張椅子….;若按這種方式擺放23張桌子需要的椅子張數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若∠A與∠B互余,則∠A+∠B=
 
;若∠A與∠B互補,則∠A+∠B=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,對于任意兩點P1(x1,y1)與P2(x2,y2)的“優(yōu)越距離”,給出如下定義:若|x1-x2|≥|y1-y2|,則點P1與點P2的“優(yōu)越距離”為|x1-x2|;若|x1-x2|<|y1-y2|,則點P1與點P2的“優(yōu)越距離”為|y1-y2|.已知點A(-2,0),B(0,a),若點A與點B的“優(yōu)越距離”不大于2,則a滿足的條件是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AC、BC是兩個半圓的直徑,∠ACP=30°.若AB=10cm,則PQ的值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知m2=2n+1,4n2=m+1(m≠2n).則求值:m+2n=
 
;4n3-mn+2n2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

實數(shù)a,b,c在數(shù)軸上對應點的位置如圖,下列式子中正確的有(  )
①b+c>0;②a+b>a+c;③bc>ac;④ab>ac.
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案