分析 先利用對稱性得到拋物線與x軸另一交點是(1,0),則可設交點式y(tǒng)=a(x+3)(x-1),然后把(-2,-6)代入求出a的值即可.
解答 解:∵拋物線的對稱軸是直線x=-1,拋物線過點(-3,0)
∴拋物線與x軸另一交點是(1,0),
設拋物線的解析式為y=a(x+3)(x-1),
把(-2,-6)代入得-6=a•(-2+3)•(-2-1),解得a=2,
∴拋物線解析式為y=2(x+3)(x-1),即y=2x2+4x-6.
點評 本題考查了待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.
科目:初中數學 來源: 題型:選擇題
A. | 2$\sqrt{3}$-π | B. | $\sqrt{3}$-$\frac{1}{6}$π | C. | $\sqrt{3}$-$\frac{2}{3}$π | D. | $\frac{9\sqrt{3}}{2}$-$\frac{3}{2}$π |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com