【題目】如圖,線段AB的長為20,點D在AB上,△ACD是邊長為8的等邊三角形,過點D作與CD垂直的射線DP,過DP上一動點G(不與D重合)作矩形CDGH,記矩形CDGH的對角線交點為O,連接OB,則線段BO的最小值為( )

A. 10 B. 6 C. 8 D. 6

【答案】A

【解析】解:如果,作射線MOCD,則點MCD的中點,由題意可得,點O為矩形CDGH的中點,所以無論G在射線DP上如何變化,O點的運動軌跡在CD的中垂線上,即O點在射線MO上.

DPCD,∴MODP,線段BO的最小值為B到射線MO的最小距離,所以當BODP時,BO取得最小值.

∵△ACD是邊長為15的等邊三角形,四邊形CDGH是矩形,∴∠PDB=180°﹣60°﹣90°=30°,線段AB的長為20,∴BD=ABAD=20-8=12,∴BO的最小值是:BDsin30°+ =12×+4=10.故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網格內有一直角坐標系,其中,A點為(-3,0),B點為(-1,2)

(1)C點的坐標為

(2)依次連接ABC得到三角形,將三角形ABC先向右移動3個單位再向下移動2個單位,得到三角形A'B'C',請在圖中作出平移后的圖形,并寫出三個頂點A'B' C' 的坐標;

(3)連接C'C、B'B,直接寫出四邊形CC' B'B的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】過關游戲規(guī)定:在過第n關時要將一顆質地均勻的骰子(六個面上分別刻有1到6的點數(shù))拋擲n次,若n次拋擲所出現(xiàn)的點數(shù)之和大于n2,則算過關;否則不算過關,則能過第二關的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學的家與學校的距離均為3000米.甲同學先步行600米,然后乘公交車去學校、乙同學騎自行車去學校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學同時從家發(fā)去學校,結果甲同學比乙同學早到2分鐘.

1求乙騎自行車的速度;

2當甲到達學校時,乙同學離學校還有多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的內角和等于一個三角形的外角和的2倍,則這個多邊形的邊數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】算24點游戲是一種使用撲克牌來進行的益智類游戲,游戲內容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運用你所學過的加、減、乘、除、乘方運算得出24.每張牌都必須使用一次,但不能重復使用.

(1)如圖1,在玩“24點”游戲時,小明抽到以下4張牌:

請你幫他寫出運算結果為24的算式:(寫出2個);   、   

(2)如圖2,如果、表示正, 表示負,J表示11點,Q表示12點.請你用下列4張牌表示的數(shù)寫出運算結果為24的算式(寫出1個):   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與化簡:

(1)(﹣5)﹣(+3)﹣(﹣7)+(﹣9)

(2)(﹣3)3÷2×(﹣2

(3)(﹣+)÷(﹣

(4)8﹣23÷(﹣4)×|2﹣(﹣3)2|

(5)化簡:4(3x2y﹣xy2)﹣6(﹣xy2+3x2y)

(6)化簡求值:2(2a2+ab﹣1)﹣2(﹣3a2+ab+1),其中a=﹣4,b=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙在400米的直線跑道上從同一地點同向勻速跑步,先到終點的人原地休息.已知甲先出發(fā)3秒,跑步過程中兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,則下列結論正確的是( )

A. 乙的速度是4米/秒

B. 離開起點后,甲、乙兩人第一次相遇時,距離起點12米

C. 甲從起點到終點共用時83秒

D. 乙到達終點時,甲、乙兩人相距68米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品進貨單價為30元,按40元一個銷售能賣40個;若銷售單價每漲1元,則銷量減少1個.為了獲得最大利潤,此商品的最佳售價應為__元.

查看答案和解析>>

同步練習冊答案