【題目】如圖1,地面BD上兩根等長(zhǎng)立柱AB,CD之間有一根繩子可看成拋物線y=0.1x2﹣0.8x+5.
(1)求繩子最低點(diǎn)離地面的距離;
(2)因?qū)嶋H需要,在離AB為5米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面2米,求MN的長(zhǎng);
(3)將立柱MN的長(zhǎng)度提升為5米,通過(guò)調(diào)整MN的位置,使拋物線F2對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為.設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,但2≤k≤3時(shí),求m的取值范圍.
【答案】(1)米;(2)米;(3)2≤m≤8﹣2.
【解析】
(1)直接利用配方法求出二次函數(shù)最值得出答案;
(2)利用頂點(diǎn)式求出拋物線F1的解析式,進(jìn)而得出x=5時(shí),y的值,進(jìn)而得出MN的長(zhǎng);
(3)根據(jù)題意得出拋物線F2的解析式,得出k的值,進(jìn)而得出m的取值范圍.
解:(1)∵a=0.1>0,
∴拋物線頂點(diǎn)為最低點(diǎn),
∵y=0.1x2﹣0.8x+5=0.1(x﹣4)2+,
∴繩子最低點(diǎn)離地面的距離為:米;
(2)由(1)可知,對(duì)稱(chēng)軸為x=4,則BD=8,
令x=0得y=5,
∴A(0,5),C(8,5),
由題意可得:拋物線F1的頂點(diǎn)坐標(biāo)為:(4,2),
設(shè)F1的解析式為:y=a(x﹣4)2+2,
將(0,5)代入得:16a+2=5,
解得:a=,
∴拋物線F1為:y=(x﹣4)2+2,
當(dāng)x=5時(shí),y=+2=,
∴MN的長(zhǎng)度為:米;
(3)∵MN=DC=5,
∴根據(jù)拋物線的對(duì)稱(chēng)性可知拋物線F2的頂點(diǎn)在ND的垂直平分線上,
∴F2的橫坐標(biāo)為:(8﹣m)+m=m+4,
∴拋物線F2的頂點(diǎn)坐標(biāo)為:(m+4,k),
∴拋物線F2的解析式為:y=(x﹣m﹣4)2+k,
把C(8,5)代入得:(8﹣m﹣4)2+k=5,
解得:k=﹣(4﹣m)2+5,
∴k=﹣(m﹣8)2+5,
∴k是關(guān)于m的二次函數(shù),
又∵由已知m<8,在對(duì)稱(chēng)軸的左側(cè),
∴k隨m的增大而增大,
∴當(dāng)k=2時(shí),﹣(m﹣8)2+5=2,
解得:m1=2,m2=14(不符合題意,舍去),
當(dāng)k=3時(shí),﹣(m﹣8)2+5=3,
解得:m1=8﹣2,m2=8+2(不符合題意,舍去),
∴m的取值范圍是:2≤m≤8﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年重慶國(guó)際馬拉松賽于3月31日在南濱公園鳴槍開(kāi)跑已知A、B兩補(bǔ)給站之間的路程為1470米,志愿者甲、乙都從A站出發(fā)支援B站.甲先出發(fā),且在途中停留了4分鐘,甲出發(fā)6分鐘后,乙才從A站出發(fā).在整個(gè)行走過(guò)程中,兩人保持各自速度勻速行走,兩人相距的路程y(米)與甲出發(fā)的時(shí)間x(分鐘)之間的關(guān)系如圖所示,則乙到達(dá)B站時(shí),甲與B站相距的路程是_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測(cè)得∠DAB=30°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=70°,求河流的寬度(結(jié)果精確到個(gè)位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG,點(diǎn)F、G分別在AD,BC上,連接OG、DG,若OG⊥DG,且⊙O的半徑長(zhǎng)為1,則下列結(jié)論不成立的是
A.CD+DF=4B.CDDF=23
C.BC+AB=2+4D.BCAB=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形的邊分別在軸,軸上,點(diǎn)的坐標(biāo)為,點(diǎn)在矩形的內(nèi)部,點(diǎn)在邊上,滿(mǎn)足∽,當(dāng)是等腰三角形時(shí),點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為,,.
請(qǐng)解答下列問(wèn)題:
(1)畫(huà)出關(guān)于軸對(duì)稱(chēng)的圖形,并直接寫(xiě)出點(diǎn)的坐標(biāo);
(2)以原點(diǎn)為位似中心,位似比為1:2,在軸的右側(cè),畫(huà)出放大后的圖形,并直接寫(xiě)出點(diǎn)的坐標(biāo);
(3)如果點(diǎn)在線段上,請(qǐng)直接寫(xiě)出經(jīng)過(guò)(2)的變化后對(duì)應(yīng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,等腰中,點(diǎn)分別在腰上,連結(jié),若,則稱(chēng)為該等腰三角形的逆等線.
(1)如圖1,是等腰的逆等線,若,求逆等線的長(zhǎng);
(2)如圖2,若直角的直角頂點(diǎn)恰好為等腰直角底邊上的中點(diǎn),且點(diǎn)分別在上,求證:為等腰的逆等線;
(3)如圖3,等腰的頂點(diǎn)與原點(diǎn)重合,底邊在軸上,反比例函數(shù)的圖象交于點(diǎn),若恰為的逆等線,過(guò)點(diǎn)分別作軸于點(diǎn)軸于點(diǎn),已知,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是甲、乙兩射擊運(yùn)動(dòng)員10次射擊成績(jī)的折線統(tǒng)計(jì)圖,那么根據(jù)圖中的信息估計(jì),擊中10環(huán)可能性更大的是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com